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A B S T R A C T   

The Horn of Africa faces an ongoing multi-year drought due to five consecutive failed rainy seasons, a novel 
climatic event with unpreceded impacts. Beyond the starvation of millions of livestock, close to 23 million in-
dividuals in the region are currently facing high food insecurity in Kenya, Somalia and Ethiopia alone. The 
severity of these impacts calls for the urgent upscaling and optimisation of early action for droughts. However, 
drought research focuses mainly on meteorological and hydrological forecasting, while early action triggered by 
forecasts is seldom addressed. 

This study investigates the potential for early action for droughts by using seasonal forecasts from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) SEAS5 system for the March–April-May (MAM) and 
October–November-December (OND) rainy seasons. We show that these seasonal rainfall forecasts reflect major 
on-the-ground impacts, which we identify from drought surveillance data from 21 counties in Kenya. Subse-
quently, we show that the SEAS5 drought forecasts with short lead times have substantial potential economic 
value (PEV) when used to trigger action before the OND season across the region (PEVmax = 0.43). Increasing 
lead time to one or two months ahead of the season decreases PEV, but the benefits persist (PEVmax = 0.2). 
Outside of Kenya, MAM forecasts have limited value. The existence of opportunities for early action during the 
OND season in Kenya and Somalia is demonstrated by high PEV values, with some regions recording PEVmax 
values close to 0.8. To illustrate the practical value of this research, we point to a dilemma that a pastoralist in 
the Kenyan drylands faces when deciding whether to adopt early livestock destocking. 

This study underscores the importance to determine the value of early actions for forecast users with different 
action characteristics, and to disseminate this value alongside the standard forecasts themselves. This allows 
users to trigger effective actions before drought impacts develop.   

1. Introduction 

Over the last decades, droughts have heavily impacted communities 
in East Africa. The ongoing drought, which began in 2020, is unprece-
dented. Most regions have experienced five consecutive failed rainy 
seasons, which is a climatic episode that has not been seen in at least 40 
years (World Meteorological Organization (WMO), 2022; IGAD Climate 
Prediction and Applications Centre (ICPAC), 2023). The current figures 
are worse than those observed during the 2010–2011 drought, with 
recent estimates indicating close to 23 million people are facing high 
levels of food insecurity in Ethiopia, Kenya and Somalia (ICPAC, 2023). 
The majority of the population of the region is highly dependent on 
rainfed agriculture, occurring during the March–April-May (MAM) and 

the October–November-December (OND) rainy seasons. Below-normal 
rainfall during these seasons frequently leads to crop failures and 
water shortages (Meza et al., 2020), which have a considerable impact 
on the population. The 2008–2011 drought in Kenya caused a staggering 
USD 12.1 billion loss to the Kenyan economy (Government of Kenya, 
2012). The Famine Early Warning Systems Network (FEWS-NET) re-
ports a dramatic increase in the number of food-insecure individuals in 
the region (Funk et al., 2019). Agro-pastoralists who live in the arid and 
semi-arid lands of East Africa are especially vulnerable to droughts, 
because their resource endowments are highly dependent on rainfall. 
Over the last few decades, these communities have suffered from 
changing and unreliable rainy seasons. Rainfall during the MAM season 
has been dramatically declining since 1999 (Funk et al., 2019; Lyon and 
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Dewitt, 2012; Maidment et al., 2015; Liebmann et al., 2014). This makes 
it more difficult to anticipate the rainfall necessary to make important 
crop and livestock production decisions, and complicates other forms of 
drought adaptations (Ndiritu, 2021). 

Therefore, early-warning systems are increasingly important for the 
region, especially to help prepare for droughts through their ability to 
trigger early actions before drought impacts develop (Food and Agri-
culture Organization of the United Nations (FAO), 2019). Compared to 
late responses to disasters, early-warning and early-action systems 
provide a higher return on investments (Global Commission on Adap-
tation, 2019). Impact assessments and modelling studies have indicated 
that early action can be highly cost effective for agro-pastoralists in East 
Africa, relative to late responses (e.g. Cabot Venton et al., 2012; Bekele 
and Abera, 2008). These actions include planting drought-resistant 
seeds, purchasing and storing fodder, destocking, water harvesting 
and migration (Gebeyehu et al., 2021; Rasmussen et al., 2014). 

Significant progress has been made on meteorological and hydro-
logical forecasting in the region. Three times a year the ICPAC releases 
seasonal temperature and rainfall forecasts during the Greater Horn of 
Africa Climate Outlook Forums (GHACOFs). Furthermore, hydrological 
forecasts from TAMSAT-ALERT (Asfaw et al., 2018) are used to predict 
soil moisture and agricultural production indicators such as the Water 
Requirement Satisfaction Index (WRSI). Much research has focused on 
evaluating the skill of these forecasting systems, such as for the ICPAC 
(Walker et al., 2019), the European Center for Medium-Range Weather 
Forecasts (ECMWF) SEAS5 (MacLeod, 2019; Mwangi et al., 2014) and 
TAMSAT (Boult et al., 2020) forecasts. 

Despite these particular investments in early warning systems, early 
actions are still insufficiently leveraged and suffer from a lack of sci-
entific foundation (Lopez et al., 2020). This also counts for areas in the 
Horn of Africa, including vulnerable agro-pastoral regions (FAO, 
2018a). Forecasts should be tailored and tested to represent relevant on- 
the-ground impacts, leading to impact-based forecasts. However, just a 
few studies conceptually described (Boult et al., 2022; Tozier de la 
Poterie et al., 2023) or developed and tested such impact-based forecasts 
for droughts (e.g. Sutanto et al., 2019; Westerveld et al., 2021). Studies 
on evaluating actions taken on these forecasts are even more scarce. 
Little is known about the manner in which forecasts may be translated 
into concrete early action triggers and recommendations for forecast 
users. The existing studies on this matter all concern floods (e.g. Bis-
chiniotis et al., 2020, 2019; Coughlan De Perez et al., 2016, 2015; Lopez 
et al., 2020). This lack of a scientific foundation on early action for 
droughts hampers the development of guidelines and advisory docu-
ments, such as context-specific Early-Action Protocols (EAPs). This is 
one of the reasons why only some African countries have approved 
national EAPs for drought (International Federation of Red Cross and 
Red Crescent Societies (IFRC), 2023). 

The present study addresses this knowledge gap. The aim of the study 
is to assess the value of seasonal rainfall forecasts from the ECMWF 
SEAS5 system to trigger action ahead of a drought during the MAM and 
OND rainy seasons in the Horn of Africa. We have developed a frame-
work to assess how these forecasts can be used effectively for (lead time- 
dependent) decision-making. The methods and the results support the 
development of drought EAPs and other early action guidelines for the 
region. 

We first describe the Horn of Africa as a case-study area. Thereafter, 
we explain the main steps that we took by presenting our methodolog-
ical framework. Subsequently, we describe the input data, the forecasts 
that we use and the impact of droughts, and we develop our analysis of 
early action. The results outline the development of impacts during 
drought, and the value for early action for users with different charac-
teristics. This includes a demonstration about how a pastoralist in Kenya 
can use our findings in practice to make livestock destocking decisions. 
Finally, we discuss and summarise our findings, and we provide rec-
ommendations for future work. 

2. Case study area 

2.1. Topography 

The Horn of Africa (HoA) is the outermost peninsula of East Africa, 
and we refer to it here to indicate the territories of Kenya, Somalia and 
Ethiopia. The region has considerable topographic variability, with a 
high mountain plateau in western Ethiopia (the Ethiopian Highlands) 
and mountains in central (the Mount Kenya region) and south-western 
Kenya. The rest of the region is characterised by low-lying arid and 
semi-arid lands that extend over large parts of Kenya and Somalia (Cabot 
Venton et al., 2012). 

2.2. Climate and rainfall 

The HoA is characterised by low and irregular rainfall which is 
strongly concentrated in the rainy seasons. Most of East Africa is char-
acterised by dual-wet OND and MAM seasons, with the latter being the 
wettest season overall (Nicholson (2017), Fig. 1, top). Some regions 
have more uniform rainfall over the year, such as the Ethiopian High-
lands and the south-eastern tip of Kenya (Seregina et al., 2019). Pre-
cipitation in the OND season is largely influenced by large-scale climatic 
oscillations, such as the El Niño–Southern Oscillation (ENSO) and the 
Indian Ocean Dipole (IOD; Liebmann et al., 2014). The climatic drivers 
of rainfall in this season are relatively well understood. However, much 
uncertainty surrounds the drivers of rainfall in the MAM season (Lieb-
mann et al., 2014; Rowell et al., 2015). This results in the OND season 
being more predictable than the MAM season, a proposition that holds 
true for both total rainfall (MacLeod, 2019) and rainfall onset and 
cessation (MacLeod, 2018). Analysis of the Climate Hazards Group 
InfraRed Precipitation with Station (CHIRPS, Funk et al., 2015) data on 
rainfall climatology reveals changes in the MAM and OND rainfall sea-
sons. OND rainfall is increasing in large parts of the region (Fig. 1, 
bottom left), while MAM rainfall shows the opposite trend (Fig. 1, bot-
tom right). Seasonal meteorological droughts become more (for MAM) 
and less (for OND) severe over most of the HoA (Fig. 1, bottom). These 
trends are consistent with previous research on the changing dynamics 
of those seasons (Nicholson, 2017; Rowell et al., 2015; Seregina et al., 
2019). However, the factors that cause the decline of MAM rainfall and 
their connection to climate change remain uncertain (Rowell et al., 
2015). 

2.3. Community adaptation to drought 

The main livelihood in the HoA region is (agro-)pastoralism (Cabot 
Venton et al., 2012; Coughlan de Perez et al., 2019), which is often the 
most suitable option for communities to maintain a viable livelihood in 
drylands (FAO, 2018a). Across the HoA, these populations are under 
pressure from droughts (Government of Kenya, 2012). The region faced 
18 periods of famine between 1900 and 2011 (Cabot Venton et al., 
2012), with the 2008–2011 famine and the ongoing 2020–2022 drought 
being the most recent significant disasters. The communities have 
developed a wide array of adaptations and coping strategies, including 
migration, the diversification of livestock, destocking, economic diver-
sification, emergency water and feed supplementation, and the distri-
bution of drought-resistant seeds (FAO, 2018a; Government of Kenya, 
2021; Opiyo et al., 2015). 

3. Methods 

We designed a methodological framework to assess the societal 
impact of rainfall anomalies, seasonal forecast skill and eventually an 
evaluation of forecast value for early action (Fig. 2). We used CHIRPS 
rainfall data for the last 40 years (1981–2020) and assessed how the 
impacts of drought develop as a result of rainfall deficits by using a 
variety of different indicators (Fig. 2, top left). We derived a range of 
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rainfall indicators with specific thresholds to examine their relationship 
with on-the-ground drought impacts. We used ensemble hindcasts from 
the ECMWF SEAS5 forecasting system and calculated the same rainfall 
indicators from these forecasts (Fig. 2, top right). Finally, we compared 
observations and forecasts in a verification analysis to calculate a rela-
tive operating characteristic (ROC) skill score (Fig. 2, centre). We used 
this forecast skill in a potential economic value analysis to calculate the 
value of using SEAS5 forecasts to trigger early action for droughts 
(Fig. 2, bottom). 

3.1. Rainfall data and indicators 

We used rainfall observations from the global CHIRPS dataset (Funk 
et al., 2015), which provides daily rainfall values on a 0.05-degree grid 
over a period stretching back to 1981. CHIRPS is widely accepted as a 
valuable rainfall product for East Africa (Dinku et al., 2007; Seregina 
et al., 2019). We downloaded ECMWF SEAS5 seasonal hindcasts 
(Johnson et al., 2019), which cover the period between 1981 and 2020, 
by using the ECMWF web API (ECMWF, 2022). These hindcasts have a 
lead time up to 7 months (up to 13 months quarterly, but not used here), 
a horizontal resolution of 0.4 degrees on a latitude-longitude grid, and 
they contain 25 ensemble members. They are initiated every month and 
produce forecasted accumulated total precipitation amounts for each 

day. A number of processing steps were required to compare CHIRPS 
rainfall with the ECMWF forecasts in the forecast verification and eco-
nomic value analysis. First, we disaggregated the daily accumulations in 
the ECMWF forecasts to daily amounts of precipitation. The spatial 
resolution of the CHIRPS rainfall dataset was reduced to 0.4 degrees to 
match the resolution of ECMWF, using a linear interpolation technique. 
We subsequently calculated seasonal rainfall indicators for the ECMWF 
forecasts and CHIRPS observations for the MAM and OND seasons. 
These indicators are 1) total seasonal rainfall, 2) the number of wet days 
(> 1 mm/day) and 3) the maximum length of dry spells. A dry spell is 
defined as a period of at least five consecutive dry days (< 1 mm/day). 
Subsequently, these absolute indicators were converted to quantiles. We 
use different drought severity classes using a range of quantile thresh-
olds (0.1, 0.2, 0.3rd) in the climatological distribution for each rainfall 
indicator separately. 

3.2. Drought impacts 

We added on-the-ground and remotely sensed drought-impact data 
to allow for impact-based forecasting and early-action analysis. For the 
on-the-ground drought-impact indicators, we digitised nine years (2013- 
2021) of monthly text-based early-warning bulletins from the National 
Drought Management Authority (NDMA) for 21 counties in Kenya 

Fig. 1. The CHIRPS rainfall climatology for the OND (left) and MAM (right) rainy seasons in the HoA region, expressed as the total seasonal rainfall climatology 
(mm) from 1981 to 2021 (top). Change of mean total rainfall and rainfall droughts (<33rd percentile) from 1981 to 2000 to 2000–2021 is also displayed (bottom). 
Note that a relatively small change in precipitation can already result in large percentual differences in very arid regions. 
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(NDMA, 2022). This community data represents six impact indicators: 
1) livestock milk production (liter/household/month), 2) cattle prices 
(Kenyan Shilling, KSh), 3) maize prices (KSh/kg), 4) human distance to 
water sources (km), 5) livestock distance to water sources (km) and 6) 
the percentage of children (<5 years old) at risk of malnutrition (see 
Fig. A.1). For the 2000–2021 period, we also included the Normalized 
Difference Vegetation Index (NDVI, Bannari et al., 1995) as a drought 
indicator, derived from the NOAA STAR Center for Satellite Applications 
and Research (NOAA, 2021). This dataset contains data from the 
Advanced Very High Resolution Radiometer (AVHRR) sensor, which is 
mounted on a constellation of NOAA polar-orbiting satellites. The 
archive contains validated seven-day composites of smoothed NDVI data 
in 4 km resolution. Besides total area NDVI, we calculated NDVI values 
for rangeland and cropland specifically, resulting in three different in-
dicators: overall NDVI, rangeland NDVI and cropland NDVI. The last two 
were obtained by using crop and rangeland masks (Pérez-Hoyos, 2018) 
and primarily capture the dynamics of agricultural vegetation. Impact 
and NDVI indicators are continuing to be collected on monthly bases. 

Meteorological droughts during the MAM and OND rainy seasons 
will affect these impact indicators. Droughts in East Africa can lead to 
increases in maize prices at local markets, primarily as a consequence of 
decreased supply due to crop failures (Government of Kenya, 2021). The 
distance to water sources typically increases, which will impact both 
humans and livestock. The vegetation conditions will deteriorate, which 
can be observed through lower NDVI values. This all contributes to 
poorer livestock conditions, which can reduce the livestock milk pro-
duction and cattle prices (FAO, 2018a). These various drought impacts 
can lead to a reduction of food security, which we measure as the per-
centage of children (<5 years old) at risk of malnutrition. We outline 
these rainfall-impact relationships in Section 4.1. 

For each county, the aforementioned drought indicator values were 
ranked over the 2013–2021 period. Each month was ranked separately, 
and the results were expressed as impact percentiles. Generally, higher 

absolute values of the impact indicators resulted in higher impact per-
centiles. Only for the NDVI and livestock indicators (livestock distance 
to water, cattle prices), higher impacts are expressed as lower absolute 
values. Therefore, the impact percentiles of these indicators were 
inverted by subtracting the percentile from 100 (e.g. 30th percentile 
becomes 70th). The impact percentiles were resampled to the mean of 
three-month periods with zero-month (lag = 0; MAM and OND seasons), 
one-month (lag = 1; April–May-June and November–December- 
January), two-month (lag = 2; May, June, July and December–January- 
February), three-month (lag = 3; June–July-August and January–Feb-
ruary-March) and four-month (lag = 4; July–August-September and 
February–March-April) delay after the rainy season. 

3.3. The relationship between seasonal rainfall and drought impact 

Seasonal rainfall forecasts can only trigger action effectively if their 
rainfall indicators cause on-the-ground impacts. Therefore, we deter-
mined whether the three seasonal rainfall indicators (see Section 3.1) 
used in the ECMWF SEAS5 forecast represent on-the-ground impacts on 
communities in Kenya. We calculated these rainfall indicators from the 
CHIRPS observations for the OND and MAM season, and compared them 
to the drought impact data from NDMA with different lag times (see 
Section 3.2). If the rainfall indicator for a season was below the 0.1, 0.2 
or 0.3 quantile of the seasonal climatology, the season would be clas-
sified as a meteorological drought. We subsequently compared the im-
pacts of meteorological drought and no-drought seasons to determine 
how well seasonal rainfall dynamics reflected drought impacts. 

We used the Cohen’s d effect size (Cohen (1988); expressed as ds) to 
quantify the effect of the rainfall indicators on drought impacts in the 21 
counties in Kenya. The metric returns the standardised mean difference 
between drought impacts in seasons of meteorological drought and 
seasons of no meteorological drought. This has been done for all impact 
indicators with the mentioned lag times, and for all rainfall indicators 

Fig. 2. Framework illustrating the research methodology, including the drought impact analysis (top-left), seasonal climate forecasts (top-right), drought forecast 
verification (middle), potential early-actions (bottom-left) and the resulting potential economic value (bottom-right). 
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and thresholds, separately. A ds of 0.5 indicates that the mean difference 
in impact is equal to half a standard deviation: 

ds =
X̄1 − X̄2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(n1 − 1)SD2

1+(n2 − 1)SD2
2

n1+n2 − 2

√ (1)  

where X̄1, SD1, and n1 are the mean impact, the standard deviation and 
the size of the sample of impacts for seasons in meteorological drought, 
and X̄2 SD2 and n2 capture the same values for no-drought seasons. We 
calculated d by using pooled standard deviation in order to correct for 
differences between group means and unequal group sizes (denomina-
tor, Eq. (1)). Hence, if the group with largest standard deviation grows 
and the group with the smallest standard deviation shrinks, pooled 
standard deviation will increase and ds will decrease. We used the 
benchmarks for d that were suggested by Cohen (1988): small [d > 0.2], 
medium [d > 0.5], and large [d > 0.8]. 

3.4. The economic value of anticipatory action 

The assessment of the rainfall-impact relationships showed that 
seasonal rainfall total was the most important rainfall indicator for on- 
the-ground impact generation (see Section 4.1, Fig. 4). Therefore, we 
used total seasonal rainfall to define meteorological droughts for the 
purposes of our early-action analysis. The CHIRPS rainfall data and the 
ECMWF SEAS5 forecasts were resampled from daily to seasonal rainfall 
totals, and areas with a long-term climatology of <10 mm per season 
were masked out. The 33rd percentile was calculated from the CHIRPS 
climatology of total seasonal rainfall for both the OND and the MAM 
seasons, and seasons with total rainfall < 33rd percentile (i.e. lower 
tercile, or below-normal rainfall) were classified as drought seasons. The 
lower tercile rainfall threshold is classified by WMO to categorize below- 
normal rainfall (WMO, 2020). The 33rd-percentile threshold was also 
calculated for the ECMWF SEAS5 forecasts for OND and MAM. A 
drought would be forecast if the fraction of ensemble members falling 
into the <33rd-percentile category exceeded the drought probability 
threshold (Pt). Subsequently, the hit rate Hrate (Hrate = number of hits / 
total amount of drought events) and the false alarm rate FArate (FArate =

number of false alarms / total amount of non-drought events) were 
calculated for all possible Pt values. The Hrate and FArate for a set of Pt 
thresholds were calculated for all pixels and used to form the ROC 
curves. It represents the ability of the system to distinguish drought 
events from non-drought events, as reflected in the comparison between 
the Hrate and FArate. The area under the ROC curve (ROC-AUC) is a skill 
score which reflects the accuracy of the forecasting system (Buizza and 
Hollingsworth, 1998; Mason, 1982). Perfect systems return a ROC-AUC 
of 1, while no-skill systems (i.e. not better than a random forecast; Hrate 
= FArate) return a ROC-AUC of 0.5. 

The forecast verification metrics Hrate and FArate can be used to 
calculate the economic value of forecast information. The Potential 
Economic Value (PEV) theory is an established method for determining 
the long-term economic benefits of early action based on forecast in-
formation (Richardson, 2000). We will introduce the concept of this 
decision framework below. 

Assuming forecasts are not used and the climatological frequency of 
drought (ō) is known, a user can decide to act always with the total 
expenses: 

EClimate = C+ ō Lu (2)  

while if action is never implemented, total expenses are as follows: 

EClimate = ō*
(
Lu +Lp

)
(3)  

where C = action costs, Lp = losses that could have been avoided by 
taking action, and Lu = inevitable drought-induced losses. 

A rational user will choose the option which generates the lowest 
amount of total expenses. If the total expenses of permanent protection 

(Eq. (2)) exceed the expenses of never taking protective action (Eq. (3)), 
users will never take such action. It follows that EClimate is defined as the 
minimum of Eqs. (2) and (3). 

When forecast information is employed, the total expenses using 
forecast information (EForecast) should be lower than the expenses only 
using climatological information. The difference between EForecast and 
EClimate can be interpreted as the benefit of using forecast information. To 
calculate the PEV of the forecasts, this benefit is compared to a bench-
mark, which is defined as the benefit that would be obtained from 
perfect forecasts (EPerfect, i.e. no false alarms (E12, Table 1) or misses (E21, 
Table 1)): 

PEV =
EClimate − EForecast

EClimate − Eperfect
(4) 

We refer to PEV simply as the ‘value’ of the forecast. The expenses 
using forecast information (Eforecast) depend on the chosen probability 
trigger threshold Pt. This threshold is used to convert the ensemble 
forecast to a binary yes/no forecast, and will yield a specific hit rate Hrate 
and false alarm rate FArate. Richardson (2000) showed that by 
substituting EClimate (minimum of Eqs. (2) and (3)), Eforecast and Eperfect in 
Eq. (4), the PEV can be conveniently expressed using the Hrate and FArate: 

PEV = min[ō, r] − FArate(1 − ō)r + Hrateō(1 − r) − ō
min[ō, r] − ōr

(5) 

It follows that, for a certain Pt for an event with frequency ̄o, the only 
user-dependent variable to determine forecast value is the cost-loss ratio 
r (=C / Lp). C denotes the costs of acting when a drought is forecast. The 
loss is the drought damage that can be mitigated by taking action (Lp). 
Users take these early actions only if C < Lp, so only actions with C/Lp 
ratios between 0 and 1 are considerable. In flood risk-management 
studies, the costs of a protective measure are often treated as fixed (e. 
g. the costs of deploying temporal barriers), which are independent from 
flood occurrence (see e.g. Bischiniotis et al., 2019). However, for 
droughts the costs of action are often more complex and dependent on 
various factors, including whether a drought occurs. For example, pas-
toralists can sell livestock prior to the rainy season if drought is forecast, 
which results into costs due to missed milk production of livestock. 
However, the missed milk production – and therefore the loss of this 
production after selling livestock – is lower under drought conditions 
(Cdrought; Table 1), than when a drought does not occur (Cnormal; 
Table 1). For these cases, the PEV theory allows the costs of action to be 
differentiated across instances in which an event does or does not occur. 
In these cases, the cost-loss ratio definition is slightly adapted (see 
Section 5 in Richardson, 2003). 

Table 1 shows a contingency table showing the total expenses for the 
combination of forecasted and observed drought occurrences. It follows 
that the expenses in case early action is triggered and drought occurs is 
equal to Cdrought + Lu (labeled E11), while in case a drought does not 
occur these are Cnormal (=E12). If early action is not triggered and a 
drought occurs, total expenses are Lu + Lp (=E21). We assume the costs 
are zero if no action is taken and a drought does not occur (E22 = 0). 

Table 1 
Contingency table of total expenses (costs and losses) associated with different 
forecasts and observations of a drought event. 

Drought observed No drought observed

Drought forecast early action
Hit

Expenses = Cdrought + Lu

False alarm

Expenses = Cnormal

No drought forecast no early action
Miss

Expenses = Lu + Lp

Correct negative

Expenses = 0

E12E11

E21 E22
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4. Results 

4.1. On-the-ground development of drought impact 

We found that total seasonal rainfall during the MAM and OND 
season has a large overall effect on impact development (d > 0.8). This 
counts for all but three indicators (livestock milk production, children at 
risk of malnutrition and cattle prices; Fig. 3). On average over all in-
dicators, total seasonal rainfall has a large effect on drought impact 
development (d > 0.8; Table A.3). Drought impacts develop for all 
drought severity thresholds, but they generally increase with the 
severity of meteorological droughts (Fig. 3). Moreover, drought impacts 
can be discriminated better using stronger drought severity thresholds, 
as indicated by larger effect sizes. Indicators with a clear physical rela-
tionship with rainfall and water availability (NDVI and distance to water 
sources for livestock and humans) generally show a larger drought 
impact (d = 0.91–1.55) than the other socio-economic NDMA indicators 
(d = 0.22–1.27). The link between the other NDMA indicators (prices, 
livestock milk production and malnutrition) and rainfall is less direct, 
and not only influenced by droughts. External influences (e.g. global 
market dynamics, armed conflicts) often also play a major role (Gov-
ernment of Kenya, 2021). Although maize prices are normally also 
dependent on these external factors, we still find the impact of meteo-
rological droughts on maize prices to be very strong (d = 0.87–1.27). 
The impacts on rangeland NDVI are stronger than on cropland NDVI. 
This can be explained in relationship to a stronger influence of human 
interventions in croplands than in rangelands, due to irrigation and 
harvesting practices which disturb the rainfall-NDVI relationship. 

Besides total seasonal rainfall, we tested two additional rainfall in-
dicators and their relationship with drought impact: the number of wet 
days and the maximum length of dry spells. We selected the 0.3th 
quantile to classify meteorological drought from the three different 
rainfall indicators to assess their relationship with impacts. Fig. 4 shows 
that all the rainfall indicators generated impacts, but that impacts are 
highest for deficits in the total seasonal rainfall indicator. In particular, 
distances to water sources, maize prices and NDVI have a stronger 

relationship with total rainfall. However, cattle prices and livestock milk 
production show a slightly stronger link with the number of wet days 
(see Fig. 4 and Table A.3). This is an indication that livestock health 
indicators have a stronger link to the distribution of rainfall, rather than 
the total amount of rainfall over the season. Drought impacts are only 
weakly related to the maximum length of dry spells during a rainy 
season (Fig. 4 and Table A.3). Impacts develop already during the MAM 
and OND season, but continue developing many months after the rainy 
season and into the dry seasons. The impacts on some indicators (NDVI 
and distance to water) manifests shortly after the start of the rainy 
season (lag of 0–1 months, red circle in Fig. 4), while others (maize and 
cattle prices as well as malnutrition) develop towards the end of the dry 
season. NDVI and distance to water are directly linked to water avail-
ability, and therefore rainfall amounts, which can explain a more rapid 
response to rainfall deficits, compared to prices or malnutrition, which 
happen further in the impact chain. 

4.2. Potential economic value of drought forecasts 

We used the most impactful rainfall indicator (seasonal rainfall to-
tals) in the forecast and early action analysis. We applied the ROC-AUC 
skill score to verify forecasts of lower tercile rainfall (<33th percentile), 
and the PEV theory to translate this skill into early action. We found that 
the OND season has substantial skill (ROC-AUC score = 0.76) over the 
HoA region for forecasts initiated on October 1st (Lead 0 in Fig. 5, 
bottom). That score decreases with increasing lead time. Skill for the 
MAM season is lower (ROC-AUC = 0.66 at Lead 0, negligible at longer 
leads). The higher skill of the OND season compared to the MAM season 
can be explained by the stronger influence of large-scale climatic os-
cillations (e.g. ENSO) in the OND season compared to the MAM season 
(see Section 2.2). Clear spatial differences in forecast skill can be 
observed (Fig. A.2). Generally, forecast skill is considerably lower in 
Ethiopia than in other areas. Kenya and Somalia show high skill (ROC- 
AUC > 0.7) for the OND season, even for Lead 1 forecasts (Fig. A.2). 
Among all of the countries under observation, the highest skill is 
observed in Somalia for the OND season. 

Fig. 3. The effect of MAM and OND rainfall droughts for different drought severity classes (total rainfall < 0.1, 0.2 and 0.3th quantile) on nine different drought 
impact indicators. Blue boxes display percentiles derived from impact indicators for meteorological drought seasons, red boxes represent non-drought seasons. 
Percentiles of the livestock indicators and NDVI are inverted; i.e. low NDVI, milk production and cattle prices return high relative impact. Green triangles indicate 
mean impact scores per category. Lag represents the number of months after the rainy seasons required for the strongest impacts to develop. Bold numbers indicate 
the magnitude of difference between impact indicators for seasons with meteorological drought and no-drought, expressed by the effect size ds. 
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These results in forecast skill can be translated to the value of the 
forecasts in the PEV analysis. The low predictability of MAM rainfall 
results in low forecast values for triggering early action (Fig. 5, top). 
Decisions triggered for the MAM season for leads higher than zero result 
in neglectable economic value. Forecasts for the OND season have 
considerable value for many users, which remains even for longer leads 
(Lead 1 and 2; Fig. 5). These PEV values, as well as the optimal proba-
bility triggers (Pt) vary for different decision-makers which trigger ac-
tions with varying cost-loss ratios (C/L; Fig. 5). Fig. 5 shows that the 
highest PEV (PEVmax) is obtained with a C/L ratio that is equal to the 
climatological frequency of the event, which in this case is 0.33 
(Richardson, 2000). It also shows that in order to maximise the value of 
the forecasts, users with low C/L ratios (i.e. actions that are cheap 
relative to the preventable damage from the event) should act relatively 
often, with a low Pt (e.g. 10 %, red line). For example, an action with a 
C/L = 0.15 should be triggered by the 10 % probability threshold when 
triggered for the OND season at Lead 0. For users with high C/L ratios, it 
is often more beneficial to trigger action only when certainty in the 
forecast is higher, using high probability thresholds. Actions with a very 
low or high C/L ratio have zero or negative value and should thus never 
be triggered, as it is more beneficial to always and never trigger action, 
respectively. 

We calculated and displayed the maximum PEV (PEVmax) of action 

over the range of C/L ratios on a pixel-level. For Lead 0, early action in 
the whole HoA region has considerable value for the OND season, with a 
PEVmax of 0.43 on average (Fig. 6, bottom). In most of the region the 
possibility of extracting substantial value from OND forecasts remain 
present also at Lead 1 and 2, except for most of Ethiopia. The high OND 
forecast skill (see Fig. A.2) for Somalia translates into high PEVmax 
values for early action, especially for Lead 0. Across Somalia PEVmax is 
0.54 on average, but high PEVmax values close to 0.8 are found in the 
centre of the country. Overall, the MAM season has low PEVmax values, 
implying that the usefulness of the SEAS5 seasonal forecasts is limited. A 
clear exception is Kenya at Lead 0, where MAM forecast value is 
considerable (PEVmax = 0.39). 

4.3. Anticipatory action on drought forecasts: an illustrative case study 

In the previous sections, we outlined the value of the SEAS5 forecasts 
for anticipatory action in the HoA. In this section, we demonstrate how 
these scientific results can be used in practice by a forecast user in the 
region. For a given cost-loss ratio of actions the optimal probability that 
should trigger action can be derived. This cost-loss ratio is context 
specific. For illustration, we showcase a hypothetical situation involving 
an agro-pastoralist in Kenya. 

Droughts heavily impact the livestock sector in Kenya. Millions of 

Fig. 4. The effect of meteorological droughts (<0.3th quantile) extracted from the three different rainfall indicators (the total seasonal rainfall, the number of wet 
days and the maximum length of dry spells) during the MAM and OND seasons on accumulated drought impacts as measured by the effect size ds. Lag time represents 
the delay in number of months after the rainy seasons that is used to calculate three-monthly mean impacts (e.g. lag 1 = the April–May-June and November–De-
cember-January periods). The red circle serves to highlight a drought indicator (NDVI) which has a quick response on rainfall deficits. 
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animals have died in the current drought. The government of Kenya 
allocates substantial funding on drought-intervention measures, most of 
which target the livestock sector (NDMA; Government of Kenya, 2021). 
A coping mechanism during droughts is the reduction of herd sizes (i.e. 
destocking). It injects income into the local economy and it may keep the 
remaining animals alive (FAO, 2018a, 2018b; Government of Kenya, 
2012). However, the price of cattle falls during droughts as a result of 
the deteriorating condition of the livestock and of market dynamics (see 
Section 4.1). Therefore, emergency destocking during droughts has 
previously been evaluated negatively (Watson and van Binsbergen, 
2008). Hence, the International Livestock Institute suggests to imple-
ment early livestock destocking triggered by early warnings, before 
animals weaken and their prices fall (Watson and van Binsbergen, 
2008). 

We evaluate the hypothetical performance of early destocking de-
cisions triggered by SEAS5 drought early warnings. We evaluate the 
decision of a pastoralist to sell one tropical cattle unit (TCU). The benefit 
of this action is the extra income that is generated by the higher market 
value of one TCU, compared to its value during or after a drought. In the 
cost-loss framework, this benefit is equal to the avoidable loss (Lp, see 
Table 1), consisting of the market value decrease. From the NDMA 

impact data (see Section 4.1) we estimated this avoidable loss to be 
2964KSH/TCU. We assumed the unavoidable losses Lu to be equal to 
zero: no livestock mortality or destocking during drought is necessary if 
early action is taken. The costs that are associated with this action 
consist of missed milk production. However, these action costs are not 
fixed: in the case of a drought, the volume of production that is forgone 
is lower than in no-drought seasons. We estimate missed milk produc-
tion from the NDMA impact data under drought conditions to be 4 L/ 
TCU and no-drought conditions at 4.5 L/TCU per month. For an average 
milk price of 65 KSH/L (Government of Kenya, 2021) this leads to the 
expected revenue from milk production conditional on the drought 
occurrence. 

We assume that pastoralists can estimate the period over which their 
cattle can survive in both drought and no-drought conditions. Differ-
ences in lifetime influence the missed milk production and thus the 
revenue for the pastoralist. Pastoralists normally only destock weak 
livestock, but they could also destock stronger livestock if the drought is 
severe. Therefore, we develop three scenarios for the pastoralist: 1) 
selling weak livestock, 2) selling normal livestock and 3) selling strong 
livestock. We define weak livestock as livestock that would survive for 
one month under drought conditions and for six months under normal 

Fig. 5. The economic value (PEV) for ECMWF SEAS5 lower-tercile rainfall forecasts for the MAM season (top) and the OND season (bottom) averaged over the HoA 
region, with lead times of zero, one and two months. Different probability thresholds (10 %, 33 % and 66 %) to trigger action are displayed. The C/L ratio can be 
derived from the action costs C and preventable damage L. The top left of each graph displays the forecast skill with ROC curves (including ROC-AUC skill scores). 
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Fig. 6. Maximum potential economic value (PEVmax) for SEAS5 lower-tercile rainfall forecasts for the MAM (top) and OND (bottom) rainy seasons for three different 
lead times (Lead 0, Lead 1 and Lead 2). Right column shows long-term rainfall climatology, as presented in Fig. 1 (top), for reference. 

Fig. 7. Potential economic value for destocking as an early action for the OND rainy season in Kenya, triggered on the first day of the season (Lead 0), one month 
ahead of the season (Lead 1) and two months ahead of the season (Lead 2). The yellow boxes indicate the C/L ratios that were found for a pastoralist in Kenya who is 
considering destocking, which vary based on the local context (e.g. the condition of the cattle at the time of destocking). 
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conditions. Normal livestock is assumed to survive for three months in a 
drought and for 12 months if there is no drought. Strong livestock is only 
marginally affected and survives for 16 months if there is a drought and 
for 24 months otherwise. The survival rates of weak and normal live-
stock are based on the relatively high livestock mortality rates that are 
common for Kenyan pastoralists during droughts (e.g. 14–43 % in 2005/ 
2006 and 60 % in 2008/2009, respectively; Nkedianye et al., 2011; 
Zwaagstra et al., 2010). 

We subsequently calculate the C/L ratios for weak, normal and 
strong livestock. We calculate the C/L ratios by using the expenses E11, 
E12, E21 and E22 for each scenario that is given in Table 1 (see Section 5 
in Richardson, 2003). We found a C/L ratio of 0.39 for sales of weak 
livestock. For normal livestock this increases to 0.61 due to the higher 
action costs (i.e. missed milk production over a longer period). Selling 
strong livestock results in a C/L ratio in excess of 1, so selling these 
animals is never profitable. 

Translating this to early-action, we found that the use of SEAS5 
drought forecasts for herd size management ahead of the OND season 
can be economically valuable (Fig. 7). PEV is substantial at Lead 0, and 
higher for weaker livestock conditions. Destocking some months ahead 
of the season (Lead 1 and 2) has low value. It follows that livestock can 
be destocked at the first day of the season (Lead 0), with the optimal 
probability trigger thresholds being 33 % for weak livestock, and 66 % 
for stronger livestock. Stronger cattle conditions require higher proba-
bility trigger thresholds (Pt) to give meaningful PEV values. In other 
words, a pastoralist needs to have more certainty in the drought forecast 
for triggering destocking for stronger livestock, because the action costs 
are higher. Lower trigger thresholds have no considerable value. 

These conclusions cannot be generalised for all pastoralists because 
local conditions and characteristics may vary. We used the region-wide 
PEV curves (Fig. 5) for this destocking intervention at a point-scale. The 
region-wide PEV curves shown in Fig. 5 are comparable for Kenya. We 
therefore used these graphs in this example. However, some regions 
showed much lower PEV values (such as large parts of Ethiopia, Fig. 6), 
and thus forecast users in these regions cannot directly use the results 
presented in Fig. 5. Pastoralists can derive an individualized probability 
threshold by calculating their own action costs and preventable losses. 
We assumed the only difference between weak and strong livestock is 
their lifetime, and therefore the missed milk production when destock-
ing. However, livestock conditions influence a broader range of factors. 
For example, weaker livestock probably has a lower milk production 
rate, requires more medical costs and has a lower market value decrease 
during drought. These are all factors that a pastoralist can take into 
account when planning an early destocking intervention. 

5. Discussion 

5.1. Rainfall product accuracy 

Although CHIRPS is widely accepted as an accurate rainfall product 
in East Africa, rainfall estimates from satellite sensors still exhibit sys-
tematic and random biases. This applies, in particular, to orographic 
rainfall of the kind that is observed in the Mount Kenya region and in the 
Ethiopian Highlands (Dinku et al., 2007; Kimani et al., 2017; Seregina 
et al., 2019). Kimani et al. (2017) showed that, although it exhibits some 
negative bias, CHIRPS performs remarkably well in detecting this 
orographic rainfall, which can be attributed to the inclusion of rain 
gauges and microwave sensors from the Tropical Rainfall Measurement 
Mission used for calibration. 

The accuracy of CHIRPS rainfall estimates over the arid lands in the 
region is more concerning. Both the rain gauges that are included in 
CHIRPS and the independent validation stations are not spatially uni-
form across East Africa, with low coverage over the drylands (Dinku 
et al., 2018, Fig. 1). Moreover, there is a large decline in the number of 
ground stations in Kenya, Ethiopia and Tanzania over the last decades 
(see Fig. 3 in Dinku et al., 2018). Nonetheless, the CHIRPS dataset is 

generally perceived as one of the most accurate rainfall datasets for the 
continent, including East Africa (Kimani et al., 2017; Maidment et al., 
2017) and its drylands (Macharia et al., 2020). We also tested the 
TAMSAT rainfall dataset in our study, which shows similar accuracy 
compared to CHIRPS across five countries in Africa (Maidment et al., 
2017). This gave similar results in our drought impact and PEV analyses 
(not shown). 

5.2. Drought impact analysis 

We used on-the-ground data from the NDMA in order to understand 
the development of the impacts of meteorological drought better (Sec-
tion 4.1). To the best of our knowledge, using these direct on-the-ground 
indicators is a novel approach. The NDMA drought impacts are gathered 
from sentinel sites, where officials observe drought conditions monthly. 
This process can be inaccurate, especially in respect to indicators which 
are hard to measure, such as walking distance to water. However, the 
availability of nine years of monthly on-the-ground socio-economic 
drought indicators is a unique feature, and such data is seldom available 
for other African countries. 

We tested monthly impact developments triggered by monthly 
rainfall deficits, but we found a smaller effect on impacts than for sea-
sonal rainfall deficits. Our impact analysis (Section 4.1) showed that 
seasonal variability alone is not an accurate predictor of malnutrition. 
This result is in line with the findings that are reported in other studies. 
Coughlan de Perez et al. (2019) found that a longer accumulation time of 
rainfall deficits (12 months) greatly increase the likelihood of food 
insecurity and famine in pastoral regions. Therefore, future studies are 
needed to explore how these multi-season drought indicators can result 
in improved food security forecasting and early-action triggers. 

Although seasonal rainfall totals proved to be influential, this obvi-
ously is not the only feature that determines impacts. Some environ-
mental impact indicators, such as NDVI and walking distance to water 
sources, have a stronger connection to rainfall than more indirect in-
dicators, such as malnutrition. Moreover, external factors, such as con-
flict, land and resource management, and national and regional 
governance can all erode the capacity of communities to adapt and cope 
(FAO, 2018a). For example, in Kenya, the 2008–2011 drought was 
preceded by the heavy post-election violence and unrest that followed 
the 2008 elections, which caused fuel and food prices to skyrocket 
(Government of Kenya, 2012). Recent international crises, such as the 
COVID-19 pandemic and the Ukrainian conflict, have caused trade 
blockades, which have also impacted communities in East Africa. 

5.3. The use of SEAS5 forecasts to trigger early action 

We verified the ECWMF forecasts for the MAM and OND seasons, 
which are the most important rainfall seasons in the HoA region. 
However, for some subregions substantial rainfall occurs in other sea-
sons (Seregina et al., 2019). For instance, the Ethiopian Highlands and 
south-western Kenya receive more consistent rainfall during the 
June–July-August-September season (MacLeod, 2019). Some have 
argued that the MAM season should not be defined as a single rainy 
season because each month has different characteristics and is associ-
ated with different causal factors and teleconnections (e.g. Nicholson, 
2017). Nevertheless, we retained the MAM and OND seasons as our main 
rainfall seasons, mainly to maintain consistency with operational fore-
casts (e.g. the GHACOF climate outlooks) and because this approach is 
employed in most contributions to this domain. 

We adopted the 33rd percentile (i.e. lower tercile) as our threshold 
for defining meteorological droughts from the CHIRPS and SEAS5 
climatology, separately. This means that an automatic correction for 
systematic errors is in place for both the forecast verification (ROC-AUC 
score) and the early-action analysis, which are based on the lower ter-
ciles. No additional post-processing was applied to optimise reusability 
of operational ECMWF model runs. More extreme events (e.g. the 10th 

T. Busker et al.                                                                                                                                                                                                                                  



Science of the Total Environment 898 (2023) 165506

11

percentile) generate higher impacts (see Fig. 3), but limit the sample size 
of drought occurrences disabling robust verification of forecasts and 
early-action analyses. Therefore, we did not use these lower thresholds 
for these analyses. 

The OND season is relatively predictable due to the large influence of 
the IOD and the ENSO. However, the influence of these large-scale tel-
econnections on East African rainfall is non-stationary and subject to 
large regime shifts (Manatsa et al., 2012; Nicholson, 2015). We found 
that, as far as Kenya and Somalia are concerned, skill in the SEAS5 
forecast is more persistent over lead time when verified over the 
2000–2020 period than when verified over the current period. While 
comparable skill was found for Lead 0, skill is higher for longer leads 
when verified only for the 2000–2020 period. This increases average 
PEVmax by around 0.1 for both southern Somalia and Kenya on all leads 
except 0. Notably, this increase in SEAS5 forecast skill for longer leads 
was not found for the MAM season. Climate regime shifts may explain 
this difference. The most recent shift occurred in 1997, after which the 
influence of the ENSO and the IOD on East African rainfall increased 
(Nicholson, 2015). This might have contributed to a higher ECMWF 
SEAS5 skill in the current climate regime. Despite the non-stationarity of 
the drivers of precipitation, we still assume that the 1981–2020 period 
reflects the performance of the SEAS5 forecasts most accurately because 
the larger number of drought events increases the robustness of the 
forecast verification. The period is in accordance with other ECMWF 
verification studies that concern the region (MacLeod, 2018, 2019). 

We showed that SEAS5 forecasts are valuable for decision-making in 
the MAM and OND seasons, in particular in respect of the latter. PEV 
curves (Fig. 5) can be used to decide if and when to trigger action. This 
depends on the cost-loss ratio of the action that is considered, but also on 
the risk preferences of the users. Risk-averse decisions are taken at lower 
Pt thresholds and thus are induced more frequently, which reduces the 
long-term event losses, but leads to higher long-term costs (Richardson, 
2003). To finetune risk preference profiles, weights can be assigned to 
the various cost-loss variables accordingly. 

We investigated destocking as a pastoral early-action strategy. 
Normal destocking, during drought, can be seen as a coping mechanism. 
Herders are often emotionally connected to their herds, and destocking 
may be a last resort rather than a form of early action. Alternative 
adaptation strategies exist that can generate higher cost-benefit ratios. It 
has been reported by Bekele and Abera (2008) that emergency livestock- 
feed supplements yield a cost-benefit ratio of 1.9 to 1.6 in Ethiopia. 
Actions of this kind, including the initiatives of the IFRC, the World Food 
Programme (WFP) and the FAO can be tested in a PEV analyses of the 
kind that was presented here. Given the high value for Lead-0 forecasts 
and the rapid decrease of value for longer leads (Fig. 5), the value of sub- 
seasonal forecasts can be explored further in future studies. 

6. Conclusions and recommendations 

This study has shown that the ECMWF SEAS5 forecasts add sub-
stantial value to decision-making for the management of droughts in the 
HoA. We used the PEV theory to determine the value of these forecasts in 
three different countries (Kenya, Ethiopia and Somalia) for the MAM 
and OND rainy seasons. We found high values for triggering action 
before the OND season, especially in Kenya and Somalia (PEVmax of 0.45 
and 0.54, respectively). The forecasts are found to be highly valuable for 
Somalia, especially in the central region of the country (PEVmax > 0.7). 
The MAM season is less predictable, which translates into low value 
across all lead times (PEVmax of 0.26). Kenya, which showed consider-
able value at Lead 0 for the MAM season, is an exception. We found that 
the forecasts have a low value for large parts of Ethiopia, except for the 
OND season at Lead 0. 

We arrived at these results by applying a forecast verification on 40 
years of ECMWF SEAS5 hindcasts, with CHIRPS rainfall data as ground 
truth. We defined meteorological drought as total rainfall <33rd 
percentile (i.e. lower tercile) of the seasonal climatology. We analysed 

on-the-ground drought-impact data from 21 different counties in Kenya 
to show that this rainfall indicator results in major drought impacts, 
larger than the number of wet days or the maximum length of dry spells. 
We found that the mean impact in MAM and OND meteorological 
droughts are always higher than for no-drought seasons, with six of the 
nine indicators showing a large effect (as classified by Cohen’s d). It 
follows that total seasonal precipitation forecasts, being impact-based 
forecasts of droughts, are often appropriate triggers for meaningful 
early actions in the region. 

The strength of the PEV analysis is that a forecast user only needs to 
determine their cost-loss ratio to optimise action triggers and the value 
of early action. We showed that actions with lower (higher) C/L ratios 
should be triggered by lower (higher) probability thresholds. We illus-
trated how a forecast user may determine their cost-loss ratio in practice 
by reference to an illustrative example of a pastoralist considering 
whether to destock livestock ahead of the season. This hypothetical 
result underlines that the optimal action triggers and expected long-term 
values are as important for end users as the forecasts themselves, and 
that they should be disseminated accordingly. Inappropriate or arbitrary 
choices of probability trigger thresholds can lead to lower forecast 
values and can even lead to additional damages (i.e. negative PEV 
values). 

Future early action guidelines and policies of local governments and 
NGOs (e.g. WFP, FAO and the IFRC) can be extended with concrete early 
action triggers for specific regions and users. These policies and guide-
lines should include concrete recommendations for early action which 
can be adopted in national and local policies (e.g. in the early-warning 
bulletins from the NDMA in Kenya). Moreover, regional climate cen-
tres, such as ICPAC, could employ the PEV analysis to translate their 
forecasts into early action triggers. When this translation is well 
configured, it can support the design of early action triggers for specific 
sectors and users at the GHACOF, a key event at which forecasts for the 
next season are released. Besides the ICPAC forecasts, future research 
should investigate other forecast types and their ability to trigger action, 
such as soil moisture forecasts (e.g. from FEWS-NET Land Data Assim-
ilation System, FLDAS) and sub-seasonal forecasts. For local commu-
nities, mobile apps or SMS/USSD services can allow users to input cost- 
loss ratios and obtain advices to trigger action together with their ex-
pected economic benefits. Therefore, future advances in mobile tech-
nology should focus not only on the dissemination of forecasts but also 
on the means by which users can set optimal triggers. 
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Appendix A

Fig. A.1. On-the-ground drought-impact indicators from NDMA, gathered over 21 arid and semi arid counties in Kenya during monthly surveillance of drought 
conditions over the 2013–2021 period. The spreads in the boxes for each county indicate monthly impact variability per county.  

T. Busker et al.                                                                                                                                                                                                                                  



Science of the Total Environment 898 (2023) 165506

13

Fig. A.2. ROC-AUC scores for seasonal droughts (seasonal total rainfall <33rd percentile) predicted by ECMWF SEAS5, for multiple lead times ahead of the MAM 
(top) and OND (bottom) season. Lead 0 refers to the first day of the respective season. Every score >0.5 (orange-red colours) is skillful (i.e. better than a 
random forecast).  

Table A.3 
The Cohen’s d effect sizes of seasonal meteorological droughts (<0.3th quantile) on the generation of drought impacts, using three different rainfall indicators 
(seasonal totals, number of wet days and maximum dry spell length), different lag times and the nine drought impact indicators. Colors are for visualization purposes 
only, and serve to illustrate the magnitude of the values found from low (light blue) to high (dark blue). 
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Seasonal rainfall totals Seasonal number of wet days Seasonal maximum dry spell length 
Lag times 0 1 2 3 4 Average 0 1 2 3 4 Average 0 1 2 3 4 Average

Catte prices 0,32 0,40 0,50 0,55 0,60 0,48 0,50 0,54 0,65 0,62 0,63 0,59 0,34 0,38 0,43 0,43 0,45 0,41

Human distance to 
water 0,81 0,93 0,89 0,76 0,68 0,82 0,52 0,51 0,49 0,42 0,37 0,46 0,57 0,45 0,36 0,31 0,31 0,40

Livestock distance 
to water 0,76 0,90 0,91 0,83 0,72 0,82 0,49 0,52 0,50 0,47 0,42 0,48 0,60 0,47 0,40 0,37 0,38 0,45

Livestock Milk 
production 0,17 0,20 0,22 0,20 0,17 0,19 0,49 0,47 0,43 0,36 0,30 0,41 0,43 0,43 0,38 0,36 0,31 0,38

Maize prices 0,26 0,45 0,62 0,80 0,87 0,60 0,15 0,26 0,40 0,52 0,57 0,38 -0,08 -0,05 0,09 0,20 0,27 0,09

Share of children at 
risk of malnutrition 0,17 0,32 0,37 0,38 0,38 0,32 0,27 0,38 0,39 0,34 0,27 0,33 0,13 0,11 0,12 0,11 0,11 0,12

Total area NDVI 1,12 1,45 1,43 1,19 0,90 1,22 0,80 1,02 0,97 0,86 0,70 0,87 0,54 0,57 0,46 0,40 0,39 0,47

Cropland NDVI 0,78 1,09 1,14 1,00 0,78 0,96 0,63 0,81 0,80 0,74 0,64 0,72 0,42 0,47 0,40 0,37 0,39 0,41

Rangeland NDVI 1,10 1,41 1,41 1,19 0,90 1,20 0,80 1,03 0,96 0,82 0,63 0,85 0,52 0,54 0,43 0,37 0,35 0,44

Average 0,61 0,79 0,83 0,77 0,67 0,73 0,52 0,61 0,62 0,57 0,50 0,57 0,38 0,38 0,34 0,32 0,33 0,35
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Pegion, P., Eischeid, J.K., 2014. Understanding recent eastern horn of Africa rainfall 
variability and change. J. Clim. 27, 8630–8645. https://doi.org/10.1175/JCLI-D-13- 
00714.1. 

Lopez, A., Coughlan de Perez, E., Bazo, J., Suarez, P., van den Hurk, B., van Aalst, M., 
2020. Bridging forecast verification and humanitarian decisions: a valuation 
approach for setting up action-oriented early warnings. Weather Clim. Extrem. 27, 
100167 https://doi.org/10.1016/j.wace.2018.03.006. 

Lyon, B., Dewitt, D.G., 2012. A recent and abrupt decline in the East African long rains. 
Geophys. Res. Lett. 39 https://doi.org/10.1029/2011GL050337. 

Macharia, J.M., Ngetich, F.K., Shisanya, C.A., 2020. Comparison of satellite remote 
sensing derived precipitation estimates and observed data in Kenya. Agric. For. 
Meteorol. 284, 107875 https://doi.org/10.1016/J.AGRFORMET.2019.107875. 

MacLeod, D., 2018. Seasonal predictability of onset and cessation of the east African 
rains. Weather Clim. Extrem. 21, 27–35. https://doi.org/10.1016/J. 
WACE.2018.05.003. 

T. Busker et al.                                                                                                                                                                                                                                  

https://doi.org/10.5194/gmd-11-2353-2018
https://doi.org/10.5194/gmd-11-2353-2018
https://doi.org/10.1080/02757259509532298
https://doi.org/10.1080/02757259509532298
https://fic.tufts.edu/publication-item/livelihoods-based-drought-response-in-ethiopia/
https://fic.tufts.edu/publication-item/livelihoods-based-drought-response-in-ethiopia/
https://doi.org/10.1016/j.ijdrr.2019.101252
https://doi.org/10.1016/j.ijdrr.2019.101252
https://doi.org/10.1016/J.SCITOTENV.2020.137572
https://doi.org/10.1002/met.1959
https://doi.org/10.1016/J.CRM.2022.100402
https://doi.org/10.21957/o3ducbrtk
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0045
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0045
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0045
https://doi.org/10.4324/9780203771587
https://doi.org/10.5194/nhess-15-895-2015
https://doi.org/10.5194/hess-20-3549-2016
https://doi.org/10.1007/S12571-018-00885-9
https://doi.org/10.1080/01431160600954688
https://doi.org/10.1002/QJ.3244
https://www.ecmwf.int/en/computing/software/ecmwf-web-api
https://www.ecmwf.int/en/computing/software/ecmwf-web-api
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0085
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0085
https://doi.org/10.4060/CA1201EN
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0095
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0095
https://doi.org/10.1038/SDATA.2015.66
https://doi.org/10.1175/BAMS-D-17-0233.1
https://doi.org/10.1016/J.JARIDENV.2021.104485
https://doi.org/10.1016/J.JARIDENV.2021.104485
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0115
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0115
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0120
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0120
http://refhub.elsevier.com/S0048-9697(23)04129-3/rf0125
https://www.icpac.net/news/dry-conditions-highly-likely-to-continue-over-the-horn-of-africa-during-the-march-to-may-2023-rainfall-season/
https://www.icpac.net/news/dry-conditions-highly-likely-to-continue-over-the-horn-of-africa-during-the-march-to-may-2023-rainfall-season/
https://www.icpac.net/news/dry-conditions-highly-likely-to-continue-over-the-horn-of-africa-during-the-march-to-may-2023-rainfall-season/
https://www.ifrc.org/appeals?date_from=&amp;date_to=&amp;location%5B6454%5D=6454&amp;type%5B6545%5D=6545&amp;type%5B6555%5D=6555&amp;appeal_code=&amp;text=&amp;page=0
https://www.ifrc.org/appeals?date_from=&amp;date_to=&amp;location%5B6454%5D=6454&amp;type%5B6545%5D=6545&amp;type%5B6555%5D=6555&amp;appeal_code=&amp;text=&amp;page=0
https://www.ifrc.org/appeals?date_from=&amp;date_to=&amp;location%5B6454%5D=6454&amp;type%5B6545%5D=6545&amp;type%5B6555%5D=6555&amp;appeal_code=&amp;text=&amp;page=0
https://doi.org/10.5194/gmd-12-1087-2019
https://doi.org/10.5194/gmd-12-1087-2019
https://doi.org/10.3390/RS9050430
https://doi.org/10.1175/JCLI-D-13-00714.1
https://doi.org/10.1175/JCLI-D-13-00714.1
https://doi.org/10.1016/j.wace.2018.03.006
https://doi.org/10.1029/2011GL050337
https://doi.org/10.1016/J.AGRFORMET.2019.107875
https://doi.org/10.1016/J.WACE.2018.05.003
https://doi.org/10.1016/J.WACE.2018.05.003


Science of the Total Environment 898 (2023) 165506

15

Macleod, D., 2019. Seasonal Forecast Skill Over the Greater Horn of Africa: A 
Verification Atlas of System 4 and SEAS5. Part 1: Precipitation. 

Maidment, R.I., Allan, R.P., Black, E., 2015. Recent observed and simulated changes in 
precipitation over Africa. Geophys. Res. Lett. 42, 8155–8164. https://doi.org/ 
10.1002/2015GL065765. 

Maidment, R.I., Grimes, D., Black, E., Tarnavsky, E., Young, M., Greatrex, H., Allan, R.P., 
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