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Abstract In this study, we present a machine‐learning model capable of predicting food insecurity in the
Horn of Africa, which is one of the most vulnerable regions worldwide. The region has frequently been affected
by severe droughts and food crises over the last several decades, which will likely increase in future. Therefore,
exploring novel methods of increasing early warning capabilities is of vital importance to reducing food‐
insecurity risk. We present a XGBoost machine‐learning model to predict food‐security crises up to 12 months
in advance. We used >20 data sets and the FEWS IPC current‐situation estimates to train the machine‐learning
model. Food‐security dynamics were captured effectively by the model up to 3 months in advance (R2 > 0.6).
Specifically, we predicted 20% of crisis onsets in pastoral regions (n = 96) and 20%–50% of crisis onsets in
agro‐pastoral regions (n = 22) with a 3‐month lead time. We also compared our 8‐month model predictions to
the 8‐month food‐security outlooks produced by FEWS NET. Over a relatively short test period (2019–2022),
results suggest the performance of our predictions is similar to FEWS NET for agro‐pastoral and pastoral
regions. However, our model is clearly less skilled in predicting food security for crop‐farming regions than
FEWS NET. With the well‐established FEWS NET outlooks as a basis, this study highlights the potential for
integrating machine‐learning methods into operational systems like FEWS NET.

Plain Language Summary In the face of increasing droughts and food crises, this study explored the
use of machine learning to provide predictions of food crises in the Horn of Africa, up to 12 months in advance.
We used an algorithm called “XGBoost,” which we fed with over 20 data sets of potential food security drivers.
After training the model, we found that food security dynamics were accurately predicted up to 3 months in
advance, especially in pastoral and agro‐pastoral regions. The model accurately predicted 20% of crisis onsets in
pastoral areas and 20%–50% in agro‐pastoral regions with a 3‐month lead time. In agro‐pastoral and pastoral
regions, our machine learning algorithm showed a similar performance to the established early warning system
from FEWS NET. The machine‐learning model did not show good performance in crop‐farming areas.
Nonetheless, this study underscores the potential of integrating machine‐learning methods into existing
operational systems like FEWS NET. By doing so, it paves the way for improved early warning capabilities,
crucial in mitigating the looming threat of food insecurity in the Horn of Africa.

1. Introduction
The Horn of Africa is one of the world's most vulnerable regions for food security, with around 57 million people
experiencing extreme poverty (UNHCR, 2023). The 2020–2023 drought caused by five consecutive failed rainy
seasons was the worst in 40 years (World Meteorological Organization [WMO], 2022). It plunged >20 million
people into conditions of high food insecurity and caused acute malnutrition among 7 million children
(UNHCR, 2023). Most of the farmers in the region are dependent on rains in the March‐April‐May (MAM) and
the October‐November‐December (OND) seasons. Meteorological droughts in East Africa have been increas-
ingly observed over the last decades, especially during the MAM season (Funk, Shukla, et al., 2019). Recent
literature suggests that these extreme droughts may increase in frequency under anthropogenic warming (Baxter
et al., 2023; Funk et al., 2023; Kimutai et al., 2023). Together with expected population growth, this change will
further increase the number of food‐insecure people over the coming decades (Funk & Shukla, 2020). These
trends emphasize the importance of strengthening food‐security early warning systems and increasing the un-
derstanding of potential drivers of food‐security crises in different contexts. Early action based on early warning
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systems save lives and financial resources compared to late response, as was shown by the 2011 drought in the
Horn of Africa (Dempsey & Hillier, 2012).

Currently, several drought early warning systems with a focus on food security are operational, such as the
Hunger Hotspot early warnings from theWorld Food Program (WFP) and the Food and Agriculture Organization
of the United Nations (FAO) (WFP and FAO, 2022), and the FAOGlobal Information and Early Warning System
on Food and Agriculture (GIEWS) (FAO, 2023b). The most widely used early warning system for Africa is the U.
S. Agency for International Development's Famine Early Warning Systems Network (FEWS NET). FEWS NET
uses a combination of observed and forecasted drought indicators, vulnerability indicators and expert judgment to
make local and regional assessments of food security. This process is conducted using key Integrated Food
Security Phase Classification (IPC) protocols (IPC, 2023). These assessments not only pertain to the food‐security
assessment of the current situation but also include projections of food security for the near term (up to 4 months
in future) and medium term (up to 8 months in future). These projections are summarized in Food Security
Outlooks (FEWS NET, 2023b). Together with national partners, humanitarian agencies such as the Red Cross
Red Crescent Movement and WFP have introduced anticipatory action for food insecurity and drought over the
last decade (WFP, 2023a). Food‐security outlooks and reliable early warning signals are crucial to triggering
these anticipatory actions.

Over last decades, many advancements have been made in improving food security forecasts. However, sig-
nificant gaps still persist. First, the main food security early warning system, FEWS NET's food‐security out-
looks, face challenges in predicting food security (Backer & Billing, 2021; Krishnamurthy et al., 2020). Although
soil moisture and drought forecasts (Boult et al., 2020; Shukla et al., 2020) as well as crop yield forecasts (Lee
et al., 2022) can often be accurate weeks to months in advance, food‐security dynamics are often hard to predict
because of region‐specific or unexpected drivers (e.g., conflict or desert‐locust outbreaks). Second, studies testing
the added value of alternative prediction methods, such as machine learning, are still scarce. The recent emer-
gence of machine learning in predictive analytics and early warning systems has been shown to enhance disaster
mitigation and preparedness (Ghaffarian et al., 2023). These systems make use of the explosion in available data
and new analytical methods (Lentz &Maxwell, 2022), such as the XGBoost machine learning algorithm (Chen &
Guestrin, 2016). Promisingly, the existing studies demonstrate that machine learning holds the potential to
efficiently monitor (Martini et al., 2022) and predict (Backer & Billing, 2024; Balashankar et al., 2023; Foini
et al., 2023; Lentz et al., 2019; Westerveld et al., 2021) food consumption, malnutrition, and food insecurity by
utilizing data on their drivers. However, many facets of machine‐learning predictions of food crises remain
unexplored. To our knowledge, none of the existing studies focus on the entire Horn of Africa region. Westerveld
et al. (2021) developed machine‐learning predictions for Ethiopia, but predicted food security transitions instead
of the FEWS IPC value itself. Furthermore, most of the existing studies lack explainable machine‐learning
techniques to shed light on the underlying potential drivers of food security on various lead times (e.g., Bala-
shankar et al., 2023; Foini et al., 2023). Moreover, existing machine‐learning models are rarely compared to
existing operational systems, such as the food security outlooks from FEWSNET. This is vital to an assessment of
the added value such machine‐learning approaches can bring. Bridging these two gaps is essential to under-
standing the potential of machine‐learning algorithms in different contexts, and to understand how they can be
adopted and integrated into the currently used consensus‐based approaches.

Consequently, the primary objective of this study is to predict food security dynamics and crisis situations in the
Horn of Africa months in advance using historical data on natural and socio‐economic processes in a machine‐
learning model. This study will increase the understanding of lead‐time‐dependent food‐security drivers and
reveal the performance of these machine‐learning models. We will compare our machine‐learning predictions
with FEWS NET food‐security outlooks to identify where our predictions can provide additional value.

We begin with an outline of the methodological framework (Section 2). In the results (Section 3), we outline the
forecast accuracy and the use of explainable machine‐learning techniques to elucidate the underlying dynamics of
food‐security drivers. Subsequently, we consider these results in the discussion (Section 4) and provide our main
conclusions and recommendations (Section 5).

2. Methods
Figure 1 shows the setup of our approach to predicting food security in the Horn of Africa, which we refer to here
as encompassing the territories of Kenya, Somalia and Ethiopia. We use the XGBoost model (Chen &
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Guestrin, 2016) as our machine‐learning model to predict IPC food‐security status on monthly and seasonal time
scales (Section 2.1.1). XGBoost, or Extreme Gradient Boosting, is an ensemble decision‐tree algorithm, like
random forest regressions, but able to model more complex interactions due to its ability to boost individual trees.
We add multiple explanatory natural hazard and socio‐economic variables (Section 2.1.2) as potential drivers for
food insecurity, which we refer to as “features.” Subsequently, the XGBoost model (Section 2.2.1) is trained
(2009–2019) to predict FEWS IPC food‐security states on multiple lead times. These predictions are tested on a
separate “hold‐out” data set (2019–2022) of FEWS IPC values (Section 2.2.2). In this stage, three benchmark
models are used to which our predictions will be compared: (a) the FEWS NET outlooks, (b) a persistence model
(prediction same as now), and (c) a seasonality model (Section 2.5). These steps are visualized in Figure 1.

2.1. Data Overview

The modeling framework aims to predict FEWS IPC acute food‐insecurity values (target variable; Section 2.1.1).
To make these predictions, 20 input variables (hereafter referred to as “features”; Section 2.1.2) are included. We
used administrative units as the spatial level of the analysis as they have a more consistent and generally smaller
size than other spatial units, such as livelihood zones. Moreover, they better facilitate the translation of our
research into early warning and action practices and policies. The mean of each feature and the FEWS NET data
were calculated for each administrative unit (admin‐1 or ‐2 levels). For Somalia and Ethiopia, the admin‐2 level
was used, but for Kenya, the admin‐1 level was used, as the admin‐2 regions (290 in total) resulted in an
impractical level of spatial differentiation for the modeling. This resulted in a total of 213 administrative units
included in the study.

Figure 1. This study design shows the input data employed in the modeling framework, which includes features used (top) and the FEWS IPC current‐situation maps
(left). These elements feed into the machine‐learning model (XGBoost) and are utilized to train the model and make predictions of future food security (center). We
compare these predictions to the current situation to evaluate the machine‐learning model (bottom). Predictions are also made using three benchmark models (right), one
of which is the state‐of‐the‐art outlook from the FEWS NET early warning system.
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2.1.1. FEWS IPC Food‐Security Outcomes

As described above, the FEWS IPC food‐security maps are chosen as the target variable to be predicted with the
model. We first provide background information on how the FEWS IPC food‐security status is determined, after
which we outline how the data was pre‐processed to be used in the model.

2.1.1.1. Acute Food‐Insecurity Monitoring Using IPC

Global food‐security assessments consist of four main pillars: food access, food availability, food utilization, and
stability (FAO, 2009). The Integrated Phase Classification (IPC, 2023) was developed to represent and evaluate
these pillars. The IPC, however, uses three different scales to measure food security and nutrition: acute food
insecurity, chronic food insecurity, and acute malnutrition.

In this study, we focus on acute food insecurity. The IPC estimates the magnitude of acute food insecurity and
identifies its key drivers (IPC, 2021, Figure 27). Acute food insecurity is measured using internationally
recognized scientific standards and cut‐offs on a five‐phase scale: Phase 1, minimal/none; Phase 2, stressed;
Phase 3, crisis; Phase 4, emergency; and Phase 5, catastrophe/famine (IPC, 2021). This system defines first‐level
food‐security outcomes—food‐consumption gaps and negative livelihood change—which, if the situation
worsens, result in second‐level acute malnutrition and mortality outcomes. The combination of these outcomes
determines the IPC classification, as malnutrition and mortality can also be caused by factors other than food‐
consumption gaps. Negative livelihood change is an important indicator because unsustainable livelihood
practices, such as the reduction of health expenditures or risky migration, temporarily decrease food‐consumption
gaps but strongly increase long‐term vulnerability. Therefore, IPC can, in this case, still assign a high acute food‐
insecurity class (IPC, 2021).

2.1.1.2. The “Target Variable”: FEWS IPC Food‐Security Maps

FEWS NET uses the IPC scale and key protocols described above to produce the FEWS IPC acute food security
estimates (FEWS NET, 2024). The estimates of the current situation provided by FEWSNET—hereafter referred
to as FEWS IPC values—serve as the primary target variable for our machine‐learning model, as illustrated in
Figure 1 (left). The maps are downloaded as shapefiles from the FEWS NET data portal (FEWS NET, 2023a).
The FEWS NET current situation estimates are released three to four times per year, depending on the period
considered (see Backer & Billing, 2021, Figure A1). We used area‐level classifications, which assign the highest
food‐security class faced by at least 20% of the population. From these maps, we calculated the population‐
weighted spatial mean per administrative unit. We used the gridded WorldPop (2024) unconstrained data
adjusted to match the official country totals from the United Nations. A population‐weighted spatial mean is most
appropriate for the aggregation to administrative units, as the FEWS IPC levels are population‐based.

2.1.2. The “Features”: Potential Drivers of Food Insecurity

We used a total of 20 features in the models (Table 1), which are classified into natural hazard indicators (local
hazard indicators and climate teleconnections) and socio‐economic indicators. The natural hazard indicators,
mostly consisting of rainfall and drought indicators, are chosen due to the strong link between drought and food
security (Funk, Shukla, et al., 2019; Svoboda & Fuchs, 2017), including a strong influence of climate tele-
connections (Funk et al., 2023). The socio‐economic indicators are selected using insights from WFPs Vulner-
ability Analysis and Mapping (VAM) system (WFP, 2023b) and the existing studies on food security forecasting.
The features were all aggregated to the scale of administrative units with methods described below.

2.1.2.1. Natural Hazard Data

Rainfall indicators: We used daily CHIRPS rainfall data (Funk et al., 2015) over the period 1981–2022. We
calculated total rainfall, total number of wet days (>1 mm/day), and maximum dry‐spell length (>5 consecutive
dry days) per month. The maximum dry‐spell length can be > 31 consecutive days if the dry spell extends over
several months. We averaged these indicators to the scale of administrative units.

Drought indices: We included three different drought indices that are pivotal for objective drought monitoring at
different spatial and temporal scales: the standardized precipitation index (SPI) (McKee et al., 1993), the stan-
dardized precipitation evapotranspiration index (SPEI) (Vicente‐Serrano et al., 2010), and the standardized soil
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moisture index (SSMI) (Blauhut et al., 2016; Hao et al., 2014). The SPI measures meteorological drought con-
ditions and is based on CHIRPS. To include wider atmospheric conditions, we calculated the SPEI, which is the
standardized difference between precipitation and potential evapotranspiration (PET). The PET was retrieved
from the global land evaporation Amsterdam model (GLEAM) (version 3.5a; Martens et al., 2017) and reflects
atmospheric conditions such as wind speed, temperature, and humidity. The GLEAM model uses satellite and
reanalysis data to estimate land‐surface evaporation and soil moisture on a 0.25‐degree grid. Additionally, the
SSMI drought indicator is derived from GLEAM using the root‐zone soil‐moisture data set.

The above drought indices are calculated using the methodology described in Odongo et al. (2023). Specifically,
the monthly indices are derived by accumulating the input variables (rainfall for SPI, rainfall and PET for SPEI,
and root‐zone soil moisture for SSMI) over 1, 3, 6, 12, and 24 months. Subsequently, a distribution was fitted
through the accumulated variables, and the data was standardized by comparing these variables with the amount
of the variable that would have been expected based on the long‐term climatology (1981–2022). For the stan-
dardization, we used a statistical distribution that best fitted the data between − 3 and +3. Multiple distributions
were tested for each of the indices per period and administrative unit. The distribution with the best fit based on
the Kolmogorov best‐fit test was selected (see Odongo et al., 2023, for details). The calculation of the SPI was
corrected for zero values in the distribution, as recommended by Stagge et al. (2015). Averaging was used to
aggregate the indices to the scale of administrative units.

Agricultural indicators:We included NDVI as the agricultural drought indicator, derived from the NOAA STAR
Center for Satellite Applications and Research (NOAA, 2021). This data set contains data from the Advanced
Very‐High‐Resolution Radiometer (AVHRR) sensor. The archive contains validated 7‐day composites of
smoothed NDVI data at 4 km2 resolution. We extracted rangeland NDVI and cropland NDVI values using crop
and rangeland masks from the Anomaly Hotspots of Agricultural Production (ASAP) system (Pérez‐
Hoyos, 2018). Subsequently, the NDVI values were expressed as anomalies per month using 2000–2021 as the
reference period, and averaged over the administrative units.

Table 1
The Features in the Model, Including Local Natural Hazard Indicators, Climate Teleconnections, and Socio‐Economic Indicators

Natural hazard indicators

Socio‐economic indicatorsLocal hazard indicators Climate teleconnections

Name Source Name Source Name Source

Total rainfall CHIRPS; Funk
et al. (2015)

Indian Ocean
Dipole (IOD)

NOAA (2023b) ACLED: number of
conflicts and fatalities

Raleigh et al. (2010)

Number of dry spells CHIRPS; Funk
et al. (2015)

Multi‐variate
ENSO index (MEI)

NOAA (2023a) Food and fuel prices WFP (2023b)

Number of wet days CHIRPS; Funk
et al. (2015)

NINO3.4 NOAA (2023a) Historical and current
food‐security situation

FEWS NET (2023a)

Standardized precipitation
index (SPI)

CHIRPS; Funk
et al. (2015)

Western V
gradient (WVG)

Funk
et al. (2023)

Humanitarian food
assistance

FEWS NET (2023a)

Standardized soil moisture index
(SSMI)

Martens et al. (2017) Headline and food
consumer price index

Somalia (NBS, 2023). Kenya and
Ethiopia (Ha et al., 2021)

Standardized precipitation and
evaporation index (SPEI)

Funk et al. (2015);
Martens et al. (2017)

Gross domestic product
(GDP) per capita

IMF (2023)

Normalized difference vegetation
index (NDVI)

NOAA (2021)

NDVI croplands NOAA (2021); Pérez‐
Hoyos (2018)

NDVI rangelands NOAA (2021); Pérez‐
Hoyos (2018)

Desert‐locust swarms FAO (2022)
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Desert locusts: We included over 10,000 data points on swarms of desert locusts obtained from the FAO Locust
Hub (FAO, 2022). The total area affected each month was calculated as a percentage of the overall area within the
defined administrative division.

Climate teleconnections: The climate in the Horn of Africa is strongly influenced by sea surface temperatures
(SSTs) in the Indian and Pacific Oceans (Funk et al., 2023). Therefore, we included multiple variables repre-
senting these SSTs: the Indian Ocean Dipole (IOD) (NOAA, 2023b), the multivariate ENSO index (MEI), and
NINO 3.4 ((NOAA, 2023a). Recent research has also discovered a new gradient in the Pacific Ocean called the
Western V gradient (WVG), which is linked to the severe drought conditions in East Africa observed over the past
several years (Funk et al., 2023). Consequently, we included the WVG as observed during the MAM season. We
assigned all SST indices to all administrative units. The areas used for the calculation of the SST indices are
visualized in Figure S1 in Supporting Information S1.

2.1.2.2. Socio‐Economic Data

Food and fuel prices:We used food and fuel prices from theWFP's price database, the VAM Food Security Portal
(WFP, 2023b). We selected maize as the main food crop for each country based on information from the Global
Information and Early Warning System from FAO (FAO, 2023a). Other crop prices were not included due to
limited data availability in WFP's price database. We also included fuel prices (diesel), as this was an important
driver of past food crises (WFP and FAO, 2022). We used the Alert for Price Spikes (ALPS) indicator
(WFP, 2014) as a means to obtain standardized prices that are corrected for the long‐term (seasonal) trend. Using
this indicator, WFP aims to detect price spikes and abnormal price deviations beyond long‐term trends. Details of
the ALPS‐indicator calculation can be found in WFP's ALPS manual (WFP, 2014).

The data is provided for 14 markets in Kenya, 98 markets in Ethiopia, and 29 markets in Somalia. We geolocated
these markets and subsequently selected the closest market for each administrative unit. For each time step, data
gaps in the closest market for a specific administrative unit are filled by the closest market in the country for which
data is available.

Macroeconomic indicators: We include inflation using data from the National Bureau of Statistics (NBS) for
Somalia (NBS, 2023) and theWorld Bank Global Inflation Data set (Ha et al., 2021) for Kenya and Ethiopia. This
includes the consumer price index (CPI) as a measure for overall inflation (“headline CPI”) and inflation on food
products specifically (“food CPI”). Furthermore, we used the gross domestic product (GDP) per capita as an
indicator for national economic growth (IMF, 2023). Incorporating these national‐level indicators can enhance
the model's performance, especially given that the machine‐learning models are trained on pooled data encom-
passing administrative units from all three countries, yet within the same livelihood zone as detailed in Sec-
tion 2.2.1. The indicators for each country were assigned to the country's administrative units.

Historical food‐security situation: Upcoming food‐security dynamics are dependent on current and past food‐
security situations. For example, low food‐insecurity stages more easily transition to high food insecurity than
vice versa (Wang et al., 2020). XGBoost can learn such relationships, so we include the FEWS IPC values of the
previous timesteps as features in the model. These values, including the humanitarian food assistance, were
aggregated to the administrative units using the same population‐weighted averaging as deployed on the FEWS
IPC current situation (the target variable, see Section 2.1.1).

Humanitarian food assistance: Data on the impact of humanitarian food assistance (recorded since 2012) has
been extracted from the FEWS NET data portal (FEWS NET, 2023a). Such aid includes direct food assistance
(i.e., in‐kind food transfers) but may also include indirect food assistance (i.e., cash or livestock assistance). The
data marks areas that would likely have been one phase more food insecure without significant humanitarian food
assistance (FEWS NET, 2023a), which are indicated with an exclamation mark (!) in the food‐security maps
published by FEWS NET.

Conflicts: Conflict data was extracted from the Armed Conflict Location & Event Data Project (ACLED; Raleigh
et al., 2010) data set. Since 1997, the ACLED data set has collected events of political violence and protest across
50 states worldwide, such as those resulting from rebels, governments, or militias. Each entry represents a single
event of a specific type at a particular location on a given day.We calculated both the total number of conflicts and
the total number of fatalities per administrative unit per month.
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2.2. The Machine‐Learning Model Architecture

2.2.1. The XGBoost Model

Decision‐tree models have shown great potential for impact‐based forecasting of climatic shocks (Everingham
et al., 2016; Guimarães Nobre et al., 2019; Schoppa et al., 2020;Westerveld et al., 2021). In our study, we selected
XGBoost (eXtreme Gradient Boosting) as the regression model of choice (Chen & Guestrin, 2016; Fried-
man, 2001). XGBoost is an advanced model that improves upon traditional decision tree approaches by not
relying on a single tree. Instead, it integrates an ensemble, or group, of different decision trees. It uses a scalable
tree‐boosting system to optimize predictions. Simple decision trees, which are called shallow (weak) learners, are
iteratively added to minimize the errors of previous predictions. Simultaneously, these trees are subjected to
regularization, which is a technique to prevent them from overfitting. This makes the XGBoost algorithm distinct
from other ensemble decision‐tree based models, such as random forests.

We selected this model due to its demonstrated speed and more effective performance compared to other models
in many different fields (Chen & Guestrin, 2016), including drought and food‐security prediction (Foini
et al., 2023; Martini et al., 2022; Westerveld et al., 2021; Zhang et al., 2023). The tree‐boosting systems allow
XGBoost to better model complex and non‐linear relationships, which are often present in food‐security systems.

A different XGBoost model was created for each lead time (0, 1, 2, 3, 4, 8, and 12 months), which resulted in
seven separate models. The data from the 213 individual administrative units was pooled in three livelihood zones
(Figure 3): (a) pastoral, (b) agropastoral, and (c) crop farming. In case a administrative unit contained multiple
livelihood zones, we selected the livelihood zone that covered the majority of the area. A different model was
made for each livelihood zone, which, combined with the different lead times, resulted in 21 unique machine‐
learning models. The pastoral and crop‐farming regions are the largest, with 82 and 106 administrative units,
respectively, whereas the agro‐pastoral regions consist of 25 different units.

2.2.2. Machine Learning Setup: Train–Test–Validation

Figure 2 illustrates the setup of the machine learning models. For each model, the time series data are divided into
a training set and a test set, adhering to an 80:20 ratio based on time. This results in a training data set from 2009 to
2019 (Figure 2, blue line) and a test data set from 2019 to 2022 (Figure 2, red line). The time series presented are
for one of the 213 administrative units (Mandera in Kenya). The test data set is out‐of‐sample, meaning that we
leave it untouched and only use it for model testing. An out‐of‐sample approach is a beneficial practice in time‐
series forecasting to ensure temporal independence of the data set (Cerqueira et al., 2020). We did not shuffle the
observations prior to the train‐test splitting, because maintaining the original temporal sequence of observations is
crucial for time series data (see for example, Cerqueira et al., 2020; Snijders, 1988).

2.2.3. Hyperparameter Optimalization

We executed a walk‐forward cross validation to tune the hyperparameters of the model, using 5 different vali-
dation sets (Figure 2b). We found the following optimal hyperparameters: maximum tree depth: 4, number of
trees/estimators: 400 and learning rate: 0.01 (see Table S1 in Supporting Information S1). Extended information
on the hyperparameters and the tuning process can be found in Supporting Information S1 (Text S1). The
evaluation scores on the five validation sets (i.e., the five different folds) are shown in Table S2 in Supporting
Information S1.

2.3. Feature Engineering

We further process the features from the data series listed in Section 2.1 using feature engineering (Zheng &
Casari, 2018). This brings time and memory effects to the XGBoost model. For each input feature, we computed
the rolling average over both the last 4 and 12 months for each individual month. These longer accumulations can
be important to the model, as food security crises often develop over longer timescales such as during the 2020–
2023 drought (WMO, 2022). We identified the timing of the main rainy seasons in the Horn of Africa, MAM and
OND, which are marked as “1” in the model data set. Memory effects in the target variable FEWS IPC were
accounted for by including values from 1, 4, and 8 months prior, along with the mean FEWS IPC value from the
past 12 months. Additionally, we incorporated country names into the model, enabling it to factor in country‐
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specific elements (such as drought‐intervention policies) not included in the original data. This resulted in a total
of 80 unique features.

2.4. Consideration of Lead Time

Predictions were made for various lead times (0, 1, 2, 3, 4, 8, and 12 months) using seven distinct XGBoost
models. Each model was trained with specific lags corresponding to the respective lead time. The lags were
implemented in the model by using features from the past to predict the target variable FEWS IPC in a specific
time step. To achieve these lags, the features were shifted in time by an amount of months equal to the lead time,
before model training started. Thus, these time shifts take place for all lead times, except for a lead time of
0 months. These lags allow the model to learn the relationships between features and FEWS IPC classes separated
by the prediction lead time.

Predictions are only generated for months when the FEWS IPC observation is released, which occurs three to four
times annually. When predicting the food‐security outcome with a 1‐month lead time, the features utilize data
recorded in the “current” month and the preceding months to make a forecast for the next month. This “historical”
data is integrated through feature engineering, as outlined in Section 2.3.

2.5. Benchmark Models and Performance Metrics

The predictions in the test set (2019–2022) were evaluated using the mean absolute error (MAE), the coefficient
of determination (R2), the hit rate, and the false‐alarm rate. Three benchmark models were used and served as a
performance reference: (a) the state‐of‐the‐art FEWS NET food‐security outlooks, (b) a seasonality model based
on historical FEWS IPC observations, and (c) a persistence model assuming no change in the FEWS IPC class.
The seasonality model makes predictions using the monthly average FEWS IPC value for each administrative
unit, as calculated over the training period (2009–2019). Every prediction with the seasonality model is similar for
different lead times because they all use the seasonality from the training set. The persistence model relies on the

Figure 2. (a) The setup of the machine‐learning model splits the features and target variables into training and test parts. As an
illustration, the time series shown represents the FEWS IPC values for Mandera in Kenya. (b) The training part is also used
for hyperparameter tuning of the model using a 5‐fold walk‐forward cross validation.
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last‐observed FEWS IPC value for making predictions, which is released three times a year over this period.
However, for lead times beyond 3 months, the model cannot use the last value. Instead, it must utilize the FEWS
IPC observation before it. For example, we assume that the FEWS NET current‐situation release occurs by the
end of the month, and therefore the persistence predictions for October on lead 0 cannot make use of the FEWS
NET release in that month. The FEWSNET food‐security outlooks require a more detailed explanation, which we
provide below.

2.5.1. The FEWS NET Food‐Security Outlooks

The FEWS NET food‐security outlooks are state‐of‐the‐art projections from FEWS NET. They are the result of a
rigorous scenario‐development process, which leads to a “most likely” future food‐security scenario (FEWS
NET, 2018). The outlooks utilize different information sources, such rainfall and temperature observations, but
also climate modes, including ENSO. At lead times of 3–6 months, FEWS NET uses long‐range seasonal
forecasts, such as root‐zone soil moisture (Shukla et al., 2020). Local vulnerability is incorporated through
knowledge and experience of livelihoods, market dynamics, and nutrition (WMO, 2017).

Two types of food‐security outlooks are created through FEWSNET for the coming 8 months: near term (the first
4 months) and medium term (the second 4 months) (FEWS NET, 2018). These outlooks, released every month,
target the month(s) just prior to the FEWS NET current‐situation observations. To validate the outlooks, we
compared them to the next available current‐situation observation in February, June, or October.

2.6. Interpretation of Model Results

Machine learning is often criticized as a black box (McGovern et al., 2019), which emphasizes the need to in-
crease model transparency. Therefore, we use the SHAP (Shapley Additive Explanations) (Lundberg &
Lee, 2017) framework to interpret model predictions and understand how the model uses the features. Shapley
values originate from game theory (Shapley, 1953) and are solutions to the problem of dividing a game's single
payout among all players according to their respective contributions. In this case, the payout is the prediction of
the statistical model, and features are the contributors. This framework is unique in the sense that it shows the
impact of every individual feature on each prediction, which is also called “local feature importance.” The SHAP
values for every input feature reveal how that feature changed the model prediction at that specific time step. The
SHAP values are in the same unit as the target variable, so that a SHAP value of 0.4 means that this feature
increased FEWS IPC food insecurity with 0.4. Thus, SHAP can reveal the influence of any of the features on any
prediction. This differentiates SHAP from the many other explanation methods based on global interpretation that
only show the contribution of the features to the model as a whole. Nonetheless, combining all local SHAP values
provides a realistic view of global feature importance (Lundberg et al., 2020).

3. Results
3.1. General Model Evaluation

The model is evaluated using the test data set covering the period from 2019 to 2022. This unique period includes
the 2020–2023 drought and food crises (WMO, 2022). This makes the period highly suitable for testing the
model's ability to predict food crises. An illustration of the predictions with the observations demonstrates the
ability of the XGBoost model to predict food‐security dynamics over different administrative units in the region
(Figure 3). This includes (a) the correct timing of the onset of crisis in, for example, Burco, Waajid, and Garissa
and (b) the dynamics of phases in low food security (e.g., in Tana River). Both the timing and dynamics are
predicted effectively, with R2 values up to 0.94 in Afmadow (Somalia).

We continue with an in‐depth model evaluation based on the test data set. Figure 4 shows an assessment of the
quality of the 3‐month forecasts with the XGBoost model across the Horn of Africa region. They have an average
MAE (mean absolute error) of 0.35. This is acceptable compared to the standard deviation of the observed FEWS
IPC values (0.8). The Tigray region in northern Ethiopia is a clear outlier with poor skill. The region experienced a
sudden increase in food insecurity during our test period (2019–2022) resulting from the outbreak of armed
conflict in November 2020. Conflicts are included in the model through the ACLED data set. However, the
relationship between conflict and food insecurity is complex (see Section 4.3.3) and led to a large underestimation
of food insecurity in Tigray (see Figures 3 and 4, Western Tigray).
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The XGBoost model dynamics were further evaluated using the coefficient of determination (R2). Over the whole
region, high R2 values were found on short lead times (R2 = 0.72 on 1 month lead; Figure 5d). However, the
model systematically underestimated high FEWS IPC values of 4. We also assessed the model performance in
different livelihood zones (Section 2.2.1) as compared to the benchmark models (Figure 5, top). The XGBoost
model demonstrates effective performance, with R2 > 0.5 recorded for predictions less than 4 months in advance
(Figure 5, green line). For longer leads, the performance decreases. Our model outperforms the persistence and
seasonality benchmark models for all three livelihood zones, especially in agro‐pastoral and pastoral regions.
However, the performance of these baseline models is significantly better in crop‐farming regions, which may be

agro-pastoralism
Crop farming
pastoralism

Figure 3. Time series show XGBoost model predictions of FEWS IPC food insecurity with a lead time of 3 months (red lines), compared to observations (blue lines).
Examples of the different administrative units are selected over various regions and livelihood zones. The map displays the three individual livelihood zones for which
the machine‐learning models are trained.
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related to the low variance in food security in such regions compared to agro‐pastoral or pastoral regions. This low
variance increases the relative capabilities of the persistence model (Figure 5, black line) for short leads and of the
seasonality model (Figure 5, magenta line) for long leads. Note that the R2 of the seasonality model is negative for
the agro‐pastoral and pastoral regions, which indicates that FEWS IPC seasonality does not generate any pre-
diction skill. This outcome suggests that the FEWS IPC dynamics in the train data set (2009–2019) are notably
different than those in the test data set (2019–2022) and emphasizes the need for more sophisticated predictions.

Subsequently, we compared the XGBoost forecasts to the FEWSNET food‐security outlooks. These cutting‐edge
outlooks are produced by the FEWSNET early warning system and are widely used. The assessment suggests that
the XGBoost model has similar performance to the FEWSNET outlooks in the agro‐pastoral and pastoral regions.
Compared to the FEWS NET outlooks, the skill of the XGBoost predictions seems to reduce less quickly for
longer leads. However, for crop‐farming regions, the FEWS NET outlooks perform considerably better,
particularly for lead times longer than 3 months, where the R2 of the XGBoost forecasts drops to below 0.5, but
the FEWS NET outlooks remain well above 0.5.

3.2. Crisis‐Onset Predictions

The above results indicate that general trends in food‐security dynamics are captured by the XGBoost model. To
use such a model as an early warning system, it is crucial to know to what extent the onset of a food crisis can be
predicted. A food crisis onset has been defined as the transition from non‐crisis (FEWS IPC <3) to crisis (FEWS
IPC ≥ 3). Thus, in case a region stays in food crisis for multiple sequential time steps, only the first time step is
counted as the crisis onset. In some cases, crises in certain administrative units were forecasted to start earlier (in
the previous timestep) than they actually did. Although these forecasts accurately anticipated a crisis, they were
deemed incorrect because the predicted onset was too early. We calculated the hit rate (number of correctly
predicted crisis onsets/total number of crisis onsets) and the false‐alarm rate (number of false alarms/number of
no crisis onsets) in the test data set.

Figure 4. A spatial map of the mean absolute error (MAE) for the XGBoost machine‐learning predictions of FEWS IPC food
security, predicted 3 months ahead of the observation. Metrics are calculated from the test set (2019–2022) for all 213
administrative units.

Earth's Future 10.1029/2023EF004211

BUSKER ET AL. 11 of 20

 23284277, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

F004211 by C
ochrane G

reece, W
iley O

nline L
ibrary on [22/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Results are shown in Figure 6. We predicted 20% of the food‐crisis onsets for pastoral regions (out of 96 onsets in
total) and 20%–50% for agro‐pastoral regions (out of 22 onsets in total) using predictions up to a 3‐month lead
time (Figure 6, top). Predictions for these regions showed a low number of false alarms (around 5%). Over all lead
times, food‐crisis onsets in Somalia were consistently predicted more effectively, followed by those in Ethiopia
and Kenya (see Figure 6, bottom left, for a lead time of 3 months). We predicted >25% of all food‐crisis onsets in
Somalia 1 month in advance with a very low number of false alarms. Predictions with a lead time of 4 months
generally showed low performance. The significant drop in skill at 4 months is probably caused by the fact that the
FEWS IPC observation of the previous timestep is no longer available to the model 4 months in advance. The
model did not predict the start of a food crisis in the crop‐farming regions (35 onsets in total). A potential
explanation for this is that certain drivers for these regions could not be included. For example, we included
proxies for crop yield (e.g., cropland NDVI) but did not have access to crop‐yield data with acceptable accuracy.

The results presented in Figure 6 imply that the ability to detect food crises of our XGBoost model is similar to the
FEWS NET outlooks for agro‐pastoral and pastoral livelihood regions. We obtained low false alarm rates
(generally <10%), which is lower than the FEWS NET outlooks on all lead times. However, the FEWS NET
outlooks clearly outperform our model in crop‐farming regions (hit rate >25–65% for lead times up to 3 months).

This difference in predictive power potentially relates to variations in the input data and dynamic forecast models
used in FEWS NET. Specifically, FEWS NET utilizes the G20 Group on Earth Observations Global Agricultural
Monitoring (GEOGLAM) crop monitor to generate their outlooks (Funk, Shukla, et al., 2019) as well as soil
moisture predictions from the NHyFAS system (Arsenault et al., 2020). Additionally, seasonal weather forecasts

Figure 5. Top: The coefficient of determination (R2) over lead time for the XGBoost predictions of food security in pastoral (a), agro‐pastoral (b) and crop‐farming
(c) livelihoods are compared to the FEWS outlooks, the persistence model, and the seasonality model. R2 values < 0 are not shown. Subsequently, the seasonality model
in pastoralism and agro‐pastoralism areas is not visible. Bottom (d): Individual XGBoost predictions and observations are visualized as a scatter plot for a lead time of
1 month. Individual dots represent a prediction or observation for one of the 213 administrative units. Colors represent the density of dots (Gaussian kernel‐density
estimate).
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from NOAA and ICPAC are used in their outlooks. This data is not used in our model. Although the model
evaluation is based on many crisis onsets, it reflects a relatively short period (2019–2022). Therefore, these results
are indicative and do not have to reflect the true accuracy of the FEWS NET outlooks or the XGBoost model
results.

3.3. Drivers of Food Insecurity

We assessed the impact of each feature on the predictions using the SHAP framework (Lundberg & Lee, 2017) for
lead times of 3 and 8 months. To obtain insights into realistic potential food‐insecurity drivers, we only show the
best‐performing administrative units (54 for lead 3 and 25 for lead 8). These are mostly located in (agro‐)pastoral
regions (Figure 7, bottom). We excluded regions with poor model performance because their key features may not
be crucial local drivers of food security; instead, these drivers are simply not well‐understood in these areas.

Food security is a consequence of multiple hazards (Boult et al., 2022), and it is well known that food security can
have different potential drivers for different lead times (WMO, 2017). Therefore, we compared the importance of
features in our models at different lead times. This resulted in a clear pattern (Figure 7). The previous FEWS NET
food‐security observation is highly important for predicting the next food‐security status for short lead times
(Figure 7a). However, this importance decreases at longer leads (Figure 7b), although it does not disappear
entirely. Climate and weather variables—rainfall, evaporation (SPEI), and soil moisture (SSMI)—are relatively
more important for predictability on short lead times (Figure 7a). These short lead‐time drivers are in line with
drivers found on the same lead time in Westerveld et al. (2021) for Ethiopia. In contrast, the predictability of long

Figure 6. Top: The hit rate and false‐alarm rate for the detection of crisis onsets (transition to FEWS IPC ≥ 3) are represented over multiple lead times for pastoralism (a),
agro‐pastoralism (b), and crop‐farming (c) livelihoods. Bottom (d): A map of the hit rates for crisis onsets on lead 3 for the XGBoost model (left) and FEWS NET
outlooks (right) is presented. Administrative units without any crisis observations in the test data set are masked. Metrics are based on the test period (2019–2022).
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lead times (Figure 7b) mostly originates from remote climate teleconnections, such as Nino 3.4 and the WVG, as
well as socio‐economic indicators, such as the GDP. We found that the number of wet days per month is the most
important rainfall indicator in the model, outnumbering SPI and the number of dry spells (Figure 7a). This
suggests that food security has a stronger link with rainfall distribution over the month than with absolute rainfall
amounts.

To understand the underlying model interactions, we further examined the relationship between model features
and food insecurity. Figure 8 illustrates the impact of the 10 most important features in the model predictions on a
4‐month lead time for the 20% best performing administrative units. Nearly all the important natural hazard
indicators have long accumulation periods: for example, SSMI‐3 (Figure 8) and amount of wet days (Figure 7) use
historical data over the last 3 and 12 months, respectively, to generate a forecast. This indicates that food security
is mostly influenced by longer and more persistent drought conditions. Interestingly, the only variable that did not
show these long accumulation periods was maize prices, which indicates that price spikes over a short period
already had a strong effect on food security.

Apart from previous FEWS NET food‐security states and maize prices, all selected features have a negative
statistical relationship with food insecurity: lower feature values (blue dots, Figure 8) lead to increases in food
insecurity (i.e., a positive impact on model output). This is to be expected, as drought (indicated by lower values
of the SPI, SPEI, SSMI drought indices) can exacerbate or even trigger food insecurity (Funk, Shukla,
et al., 2019).

The remote climate teleconnections also show an expected positive relationship with food insecurity (Figure 8):
lower indices of Nino 3.4, WVG, IOD, or MEI are all drawing the East African climate toward a dryer state (Funk
et al., 2023; Funk, Pedreros, et al., 2019). Negative IOD values imply relatively lower SSTs in theWestern Indian
Ocean, which result in less evaporating moisture transported into East Africa. Negative MEI and Nino 3.4 imply a
La Niña with overall cooler SSTs in the Eastern Pacific and warmer SSTs in the Western Pacific (Figure S1 in
Supporting Information S1). The WVG reflects a warm blob in the Pacific Ocean around Indonesia and the
Philippines (Figure S1 in Supporting Information S1), which have recently been found to be connected to the East
African climate on long leads (Funk et al., 2023; Funk, Pedreros, et al., 2019). Our model results are consistent

Figure 7. The top five most important features for a lead time of 3 months (a) and 8 months (b) for the best performing regions. Features are ranked based on the mean of
the absolute SHAP values. Colors illustrate the different data categories (natural hazard, socio‐economic, and remote climate teleconnections) in accordance with the
colors in Figure 1. The maps (bottom) show the administrative units used for the SHAP calculation.
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with these findings and suggest that the WVG is also important for such impact‐based forecasts, especially on
long leads (Figure 7b). The SHAP values for the best performing regions found for the other lead times can be
seen in Figure S3 in Supporting Information S1. These results demonstrate that the underlying model interactions
are physically understandable and reflect intuition and the newest research insights.

4. Discussion
4.1. Adding Value to FEWS NET

This study indicates that machine‐learning models can have similar performance to operational early warning
systems such as FEWS NET. However, in crop‐farming regions, the FEWS NET outlooks clearly outperformed
the XGBoost model. This indicates that the machine‐learning model could complement the existing FEWS NET
outlooks in (agro‐)pastoral regions, which are especially vulnerable to food crises. The FEWS NET outlooks are
based on a scenario‐development process and expert judgments, while our predictions are data‐driven, enabling a
transparent generation of early warnings. Nonetheless, the FEWS NET current situation estimates are still a vital
component of the machine‐learning model and often the most important feature. This means that the expert
assessments remain of high value in our machine‐learning approach. Besides the more transparent generation of
early warnings, another benefit is that potentially a higher initiation frequency can be achieved. Many of our
utilized data sets are regularly updated, such as ACLED, which receives weekly updates, and the WPF VAM
portal, which is updated biweekly. In practice, this could result in an increased frequency of outlook releases with
relatively low additional financial resources and effort. Ultimately, this can result in more timely and improved
early warnings. However, not all data sets are updated regularly and provide near real‐time data. For example, the
GLEAM data set is only updated once a year (GLEAM, 2024). In addition to complementing operational early
warning systems, explainable AI techniques can reveal new potential food‐security drivers for certain regions or
lead times, which may then contribute to the scenario‐development process for the FEWS NET food‐security
outlooks. A greater understanding of the drivers can also lead to more informed decisions on the ground and
help tailor emergency‐response planning.

These considerations demonstrate that such machine‐learning predictions could add value as one component to
operational systems, such as the FEWS NET early warning system. By no means can and should a machine‐
learning model entirely substitute early warning systems like FEWS NET. Relying solely on machine learning
for disaster risk reduction is insufficient (Ghaffarian et al., 2023). On the ground expert judgment, local
knowledge, and field experience are crucial to the co‐production and functioning of early warning systems
(ICPAC, 2021).

Figure 8. The top 10 most important features for model predictions with a lead time of 4 months, as indicated by the SHAP
values for each feature's contribution. Each dot represents a prediction from the model, with the color indicating the value of
the feature and the x‐axis signifying whether the feature increased (positive SHAP values) or decreased (negative SHAP
values) the model prediction of food insecurity. SHAP plots for all lead times are displayed in Figure S3 in Supporting
Information S1.
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4.2. Machine‐Learning Architecture: Key Considerations

The model results show that the prediction of acute food insecurity is complex, with many drivers that may
contribute to changes in food‐security status. Many different machine learning algorithms can be used to capture
these drivers. We favored the use of a tree‐based model over a neural‐network model, as we did not expect strong
multi‐temporal or multi‐spatial dependencies often found in other domains, such as image recognition (Fujiyoshi
et al., 2019) or storm‐surge modeling (Tiggeloven et al., 2021). Moreover, tree‐based models often outperform
neural networks on tabular data where features are individually meaningful (Lundberg et al., 2020).

We found that the XGBoost model was more capable of capturing these complex interactions than other tree‐
based models. We tested our results against random forest models, and the XGBoost model yielded a slightly
higher performance, especially for crisis‐onset predictions (see Figure S2 in Supporting Information S1). This is
consistent with other studies. Westerveld et al. (2021) showed that the XGBoost model is superior to other
machine‐learning models for predicting transitions in food crises.

The feature engineering, which adds features based on existing ones, resulted in a total of 80 different features for
the model. Some of these features are related (e.g., total precipitation over the last 4 and last 12 months). Feature
selection—the reduction of features based on their (expected) performance—can help address multicollinearity
(Chan et al., 2022), which is the correlation between predictor variables. While it can reduce multicollinearity, we
opted not to perform feature selection in our study. This decision was influenced by XGBoost's robustness in
handling multicollinearity. Additionally, we now retain all features in our 21 models, each tailored to different
livelihood zones and lead times. Removing features risked losing vital insights specific to each model's context.

Before we pooled the data of the individual administrative units together (based on the three livelihood types), we
tested many other spatial scales for model training. The levels involved were as follows: administrative units (213
individual models for each lead time), livelihood zones within all three countries, the three countries, and last, all
data for the 213 administrative units pooled together with the livelihood zones as additional features. We found
that increasing the level of spatial pooling significantly improved model performance. This can be explained by
the limited period 2009–2019 used for training, which, within one administrative unit, simply does not contain
sufficient data to learn the actual drivers of food insecurity. Pooling based on livelihood zones over the whole
region performed most effectively, slightly better than pooling all data from every administrative unit together.
Although the performance gain was small, making it difficult to draw definite conclusions, this could suggest that
different livelihoods are influenced by distinct food‐security drivers.

4.3. Limitations of the Study

4.3.1. The Data Sources

We created an extensive data set with food‐security drivers from natural hazard indicators, socio‐economic in-
dicators, and remote‐climate teleconnections. Although this is a holistic and extensive data set, certain important
drivers and food insecurity precursors could not be included. We did not have access to crop‐yield data on a
monthly time scale for all the administrative units. Its exclusion may be a reason why the food‐security crises
could not be predicted effectively in crop‐farming regions, whereas FEWS NET outlooks do predict these crises
accurately (Figure 6). Krishnamurthy et al. (2022) found that incorporating additional remote sensing observa-
tions, such as those from the Soil Moisture Active Passive (SMAP) mission, could significantly enhance pre-
diction capabilities. Balashankar et al. (2023) found that the inclusion of real‐time news articles in a random forest
model can lead to further improvements in the predictions of food crises. Future studies can expand on our
research by including more of such data sources, which might lead to further model improvements. The per-
formance of the model in detecting food crises in Kenya and Ethiopia is limited (Figure 6d). This, in part, can be
explained by missing data. For example, maize prices—an important feature in our model—were not available for
Kenya after 2020. Thus, although this feature can be used to train the model, it was missing during the model
evaluation in the test set (2019–2022). Although the WFPs VAM portal provides price data for a high amount of
markets, less markets were available for Kenya (14 markets) compared to Ethiopia (98) and Somalia (29). This
issue emphasizes the importance of continuous data collection and archiving efforts. Future studies can include
indicators reflecting market accessibility. While we only include the distance to the closest markets, the inclusion
of market accessibility and functionality indicators (such asWFPsMarket Functionality Index) could increase the
model performance.
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4.3.2. Model Testing

Although this study shows the potential of machine‐learning systems for food‐security early warning, the data
could only be tested for a short period (2019–2022). This brings uncertainty to the verification of the predictions,
especially for crisis onset events. Nonetheless, the test period of the study, 2019–2022, was highly suitable to test
the predictions of food crisis onsets, as in this period many regions plunged into high levels of food insecurity.
Therefore, we could evaluate our predictions on a total of 153 crisis onsets, making our skill estimates more
robust.

The test period also reflects a turbulent period that, besides the 2020–2023 drought, encompassed the COVID‐19
pandemic and the start of the Russian invasion of Ukraine. Both events have had significant economic effects
worldwide, with economic fallouts and price raises that in turn have resulted in record levels of malnutrition and
food insecurity (WFP, 2022). Thus, food crises during the test period (2019–2022) were largely drought‐driven,
but embedded in conflict, the Russia‐Ukraine conflict, and the COVID‐19 pandemic that further complicated food
security dynamics. Due to the unique characteristics of the test period, the model performance might change when
tested on other periods. Future studies can test our models on different time periods.

4.3.3. The Role of Conflict in Predicting Food Crises

Conflicts are included in the model through the ACLED data set. However, they were not identified as an
important variable in our model, as shown by its absence in the SHAP plots (Figures 8 and Figure S3 in Sup-
porting Information S1). This is surprising, as research and practice show that conflict drives hunger
(WFP, 2022). As such, we found that this missing link between conflict and hunger reduced the accuracy of our
predictions. We failed to predict the rapid increase in food insecurity in the Tigray districts after the armed conflict
erupted in November 2020 (Weldegiargis et al., 2023), which returned high error scores over this region for all
lead times (MAE, Figure 4). Despite the ACLED data set showing clear signals in November 2020—three months
prior to the crisis becoming apparent in the FEWS IPC data—our model did not anticipate the crisis at this lead
time. This failure may be explained by the fact that the Tigray conflict was the largest recorded in the ACLED
conflict data set over the 2009–2022 period, and therefore, the model could not train on conflicts of this
magnitude. Moreover, some large conflicts in our data set (e.g., the Mogadishu bombings in October 2017) were
followed by a decrease in food insecurity rather than an increase. As the source of error seems to be the model's
missing link between conflict and food insecurity, integrating conflict forecasts into our model likely would not
have enhanced the accuracy of our predictions for the Tigray food crisis. Conflict has consistently emerged as a
complex factor in food‐insecurity early warning, as highlighted in prior studies (Krishnamurthy et al., 2020,
2022). Interestingly, Backer and Billing (2024) found that conflict indicators are important features in their model
forecasting the prevalence of child acute malnutrition. This could be explained by the inclusion of two additional
conflict data sets besides ACLED: the Global Terrorism Database (LaFree & Dugan, 2007) and the UCDP
Georeferenced Event Data set (Sundberg & Melander, 2013).

5. Conclusions and Recommendations
In this study, we developed an XGBoost machine‐learning model to predict food insecurity on monthly timescales
over the Horn of Africa. We trained the model on the 2009–2019 period using >20 different data sets and the
FEWS IPC current situation as ground truth. Our model predicted 20% of crisis onsets in pastoral livelihood
regions (n = 96) and 20%–50% of crisis onsets in agro‐pastoral livelihood regions (n = 22) several months in
advance with low overall numbers of false alarms. Furthermore, the model predicted general food‐security
patterns up to 3 months in advance (R2 > 0.6). This underscores the potential of such machine‐learning
models to complement existing early warning systems, such as FEWS NET.

FEWS NET builds on decades of experience in food‐security monitoring and early warning, and the FEWS NET
food‐security outlooks are widely adopted. To serve as an ultimate benchmark, we compared our predictions with
these FEWSNET outlooks over the 2019–2022 period. Results suggest the performance of the XGBoost model is
similar to the FEWS NET outlooks for agro‐pastoral and pastoral regions. However, the FEWS NET outlooks
clearly outperform our model for crop‐farming regions. Moreover, machine‐learning models need sufficient
training data, which limited the data available during the test period (2019–2022). This decreased the robustness
of model performance estimates. Thanks to continuing monitoring efforts from FEWS NET, more data will be
available in the future to train and test such machine‐learning models.
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This study shows the potential of food‐security predictions made with machine learning to complement existing
early warning systems, such as FEWS NET, by allowing more frequent updates and revealing specific drivers in
particular regions. Future research could further explore how such machine‐learning models can be improved.We
expect that the inclusion of dynamical forecasts as features in the machine‐learning model will lead to a sig-
nificant improvement. Soil moisture and yield forecasts (Shukla et al., 2020) can lead to better predictions in crop‐
farming regions. Moreover, decision‐makers can use results from this study as indications for potentially
important drivers of food‐security crises at different lead times, which may lead to more informed and timely
interventions. The organizations operating and developing food security early warning systems can use our results
to envision and shape hybrid solutions where a part is automated and based on machine learning, but also a part
remains consensus‐based.

Data Availability Statement
The input data used to run the food‐security machine learning model in the study are available at Zenodo
(Busker, 2023b) with the Creative Commons Attribution 4.0 International license. Version 1.0.1 of the machine
learning model used to generate the food security predictions is preserved at Zenodo (Busker, 2023a), available
with the Creative Commons Attribution 4.0 International license.
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