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Abstract
The East African ‘short rains’ in October–December (OND) exhibit large interannual variability. Drought and flooding are 
not unusual, and long-range rainfall forecasts can guide planning and preparedness for such events. Although seasonal fore-
casts based on dynamical models are making inroads, statistical models based on sea surface temperature (SST) precursors 
are still widely used, making it important to better understand the strengths and weaknesses of such models. Here we define 
a simple statistical forecast model, which is used as a tool to shed light on the dynamics that link SSTs and rainfall across 
time and space, as well as on why such models sometimes fail. Our model is a linear regression, where the August states of 
El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) predict about 40% of the short rains variability in 
1950–2020. The forecast errors are traced back to the initial SSTs: too-wet (too-dry) forecasts are linked linearly to positive 
(negative) initial ENSO and IOD states in August. The link to the initial IOD state is mediated by changes in the IOD between 
August and OND, highlighting a physical mechanism for prediction busts. We also identify asymmetry and nonlinearity: 
when ENSO and/or the IOD are positive in August, the range and variance of OND forecast errors are larger than when the 
SST indices are negative. Upfront adjustments of predictions conditional on initial SSTs would have helped in some years 
with large forecast busts, such as the dry 1987 season during a major El Niño, for which the model erroneously predicts 
copious rainfall, but it would have exacerbated the forecast in the wet 2019 season, when the IOD was strongly positive and 
the model predicts too-dry conditions.
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1  Introduction

Climate variability in East Africa is high, with floods and 
droughts significantly impacting lives and livelihoods (e.g., 
Little et al. 2001; Conway et al. 2005; Haile et al. 2019). 
The ‘short rains’ in the boreal autumn (Dunning et al. 2016; 
Nicholson 2017) in particular show substantial interannual 
variability, with extreme impacts from both flooding (e.g., 
in 2019; Chang’a et al. 2020; Nicholson et al. 2021; Wain-
wright et al. 2021) and drought (e.g., in 2010; Dutra et al. 
2013).

A strong association between El Niño–Southern Oscilla-
tion (ENSO) and the short rains has been known for decades 

(e.g., Ropelewski and Halpert 1987), and the key importance 
of the Indian Ocean for the short rains also has a long history 
(e.g., Nyenzi 1988; Beltrando and Camberlin 1993; Hasten-
rath et al. 1993). The Indian Ocean Dipole (IOD; Saji et al. 
1999), which peaks around September–November (e.g., 
Zheng et al. 2021), is an oceanic driver of the short rains 
(Latif et al. 1999; Black et al. 2003; Black 2005; Bahaga 
et al. 2019), specifically through its role in a local east–west-
oriented Walker cell (e.g., Goddard and Graham 1999; Has-
tenrath et al. 2004; Behera et al. 2005; Ummenhofer et al. 
2009; Nicholson 2015; Zhao and Cook 2021). Numerous 
studies have shown that ENSO in boreal summer leads the 
IOD in boreal autumn (e.g., Stuecker et al. 2017; McKenna 
et al. 2020), suggesting a mainly indirect role of ENSO in 
the context of predicting the short rains. Some studies have 
estimated the spatial patterns of rainfall anomalies associ-
ated with events where both ENSO and the IOD are active, 
compared to ENSO-only events; the latter showing a weaker 
and less homogenous rainfall response (MacLeod and Cami-
nade 2019; MacLeod et al. 2021).
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Seasonal forecasts can play a central role in planning 
and preparedness (e.g., Lemos et al. 2012; Bruno Soares 
et al. 2018; Tall et al. 2018; Bazo et al. 2019; Nyamekye 
et al. 2021). Forecast skill is underpinned by seasonal pre-
dictability arising from teleconnections with large-scale 
drivers, and with a strong link to ENSO and the IOD, short 
rains forecasts generally show high levels of skill at long 
lead times (e.g., Mwangi et al. 2014; Bahaga et al. 2015; 
MacLeod 2019). The season is then a prime candidate for 
forecast-based early actions, and seasonal forecasts have 
been provided at the Greater Horn of Africa Regional 
Climate Outlook Forum (GHACOF) meetings for over a 
decade (Hansen et al. 2011; Walker et al. 2019), with the 
outlook for October–December (OND) usually produced 
in late August.

The GHACOF forecasts are issued by the Intergovern-
mental Authority on Development (IGAD) Climate Pre-
diction and Applications Centre (ICPAC) and produced in 
collaboration with the National Meteorological and Hydro-
logical Services (NMHS) of 11 countries, from Sudan in the 
north to Tanzania in the south. Previously, the GHACOF 
forecasts were the outcome of an opaque ‘consensus’ pro-
cess, which included the use of dynamical forecast models, 
statistical regression models, and ‘analogue years’ based on 
the current tropical SST anomalies (mainly ENSO and the 
IOD). The consensus process has had a ‘tendency to over-
forecast the near normal category of rainfall’ (Walker et al. 
2019), which is unfortunate because it leads to under-predic-
tion of lower- and upper-tercile events. In an effort to miti-
gate this problem, the production of the forecasts has gradu-
ally evolved towards being based on ‘objective’ dynamical 
model forecasts in recent years, but there is an understand-
able reluctance to fully embrace dynamical models.

In fact, conversations that we have had with NMHS rep-
resentatives in East Africa reveal that methods based on SST 
regressions and analogue years are still widely used in the 
region. It is therefore important to study the performance of 
statistical forecast models in predicting the short rains, to 
learn more about the dynamical pathways linking August 
SST anomalies and OND rainfall, as well as assessing the 
years when statistical forecasts fail. This is the purpose of 
the study described here, which we hope will contribute to 
a more informed use of statistical models.

We note here that many previous studies have described 
regression-based short rains prediction models based on 
SST indices and atmospheric precursors (e.g., Mutai et al. 
1998; Philippon et al. 2002; Ntale et al. 2003; Hastenrath 
et al. 2004; Nicholson 2014). The skill of several of these 
models is higher than the skill of the model that we present 
here. Our purpose is not to create the best possible statistical 
prediction model, but rather to study a simple SST-based 
model to try to understand the strengths and limitations of 
that model.

Specifically, we seek to understand the ability of climate 
conditions (ENSO and IOD) which are present at the time 
of the late August GHACOF to anticipate OND rainfall, in 
order to diagnose those climate states which are (and are 
not) a useful indication of upcoming climate variability. We 
do this through the use of a linear regression model based 
on reanalysis data from 1950 to 2020, relating ENSO and 
IOD to rainfall and variables that describe the Walker cir-
culation over the Indian Ocean. We then harness the errors 
of the reanalysis-based linear model as a diagnostic tool, to 
provide insight into the relationship between August SSTs, 
the OND Walker circulation, and the short rains. Changes 
in the SST forcing between the prediction time in August 
and the OND itself is investigated as a possible source of 
errors. Furthermore, we study the relationship between OND 
forecast errors and precursor SST conditions in August to 
determine if there exist certain conditions which can indi-
cate a priori (upfront) the level of uncertainty in a seasonal 
forecast. We recently used a similar approach to show that 
the ECMWF monthly forecasting system has a systematic 
conditional short rains bias contingent on the initial IOD 
state (Kolstad et al. 2021).

Studies of conditional forecast model errors and biases 
such as the one described herein are relevant for both 
dynamical forecasts initialised with SST fields which have 
had notable forecasts busts in recent years (Kilavi et al. 2018; 
MacLeod and Caminade 2019), and for statistical forecasts 
based on precursor SST conditions. They may also guide the 
use of analogue forecasts which produce an outlook based on 
diagnoses of historical seasons with similar SST conditions.

2 � Data and methods

2.1 � Data and detrending

ERA5 reanalysis (Hersbach et al. 2020c) monthly mean 
data from 1950 to 2020 are used throughout. The following 
variables are analysed: precipitation, SST, vertical veloc-
ity at 500 hPa ( w500 ; positive upwards), and zonal wind 
at 850 hPa ( u850 ). The SSTs in ERA5 are prescribed from 
independent datasets. To compensate for trends during the 
study period, the SST and precipitation data from ERA5 are 
linearly detrended. As the data for the other variables have 
less consistent trends, these are not detrended.

For precipitation, datasets which are based on direct and 
satellite-derived observations exist, such as the Climate 
hazards infrared precipitation with stations (CHIRPS) data-
set (Funk et al. 2015). A comparison between ERA5 and 
CHIRPS in East Africa has indicated that ERA5 is slightly 
wetter than CHIRPS in October and November, particularly 
near the Equator (Gleixner et al. 2020). ERA5 also exhibits 
a stronger drying trend from the 1980s and onwards than 
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CHIRPS, but this appears to be a bigger problem in Central 
Africa than in our focus region. Nevertheless, any spurious 
ERA5 precipitation trends are removed from our analysis by 
first detrending the data. The main reason for using ERA5 
precipitation data is that we gain 31 years for the analysis, as 
the CHIRPS period starts in 1981. To assess the differences 
between ERA5 and CHIRPS, we calculated the Empirical 
Orthogonal Functions (EOFs; see Sect. 2.3) of East African 
precipitation for both datasets, and the interannual correla-
tion between the first principal components was 0.97 in the 
overlapping period between 1981 and 2020. (Note that we 
included oceanic grid points in the calculation of the ERA5-
based EOFs, while CHIRPS is only defined over land.) 
Although there are doubtless differences between ERA5 and 
CHIRPS on the local scale and daily time scales, the two 
data sources give highly similar results on the aggregated 
temporal and spatial scales studied here.

2.2 � SST indices

Two SST indices are used, and these are based on stand-
ard regions (e.g., Stuecker et al. 2017): the NINO3.4 index 
(referred to as N34 from now), calculated as area-averaged 
SST anomalies from 170° W to 120°W and between 5° S 
and 5° N; and the IOD dipole mode index (DMI hereaf-
ter), computed as the difference between area-averaged 
SST anomalies in the western (50° E to 70° E and 10° S to 
10° N) and eastern (90° E to 110° E and 10° S to 0°) Indian 
Ocean. The detrending was performed after the indices had 
been computed, and then the N34 and DMI time series were 
standardized.

2.3 � EOF analysis

The rainfall analysis is based on EOFs, which reduce vast 
amounts of data to a limited number of interannual time 
series. We first calculate detrended ERA5 OND precipitation 
anomalies for each grid point (irrespective of the land mask) 
from 10° S to 12° N and 30° E to 52° E—the same region 
used by Vigaud et al. (2017) and Kolstad et al. (2021). This 
gives us 71 precipitation maps, which are used as input to 
the eofs software package for Python (Dawson 2016).

2.4 � Linear prediction

We predict several variables during OND based on SST indi-
ces in August. The choice of August as the initial month is 
motivated by the timing of the GHACOFs addressing the 
OND season, which are usually held in late August. In addi-
tion to predicting the rainfall, we also predict certain vari-
ables related to the Walker circulation, namely SST, w500 , 
and u850 , all in OND. Naming the SST indices X1 (N34) and 

X2 (DMI), we define a regression that describes their lagged 
relationship with any variable Y:

where � is the residual. The non-calibrated prediction of Y  
is written as:

We estimate ĉi separately for each year by using the time 
series of Y  , X1 and X2 for all the other years; this method 
is usually referred to as ‘out-of-sample’ or ‘leave-one-out’ 
cross-validation. (Note that when predicting the principal 
components, we do not compute out-of-sample EOFs for 
each year, as this might for some years create different spa-
tial patterns and principal components with opposite signs; 
we just leave the in-sample elements of the principal com-
ponents out in the prediction.) To scale the prediction, we 
divide ŷ by its out-of-sample standard deviation and multi-
ply by the out-of-sample standard deviation of Y  to obtain a 
calibrated prediction:

2.5 � Mediation

If a ‘causal variable’ A is significantly correlated with an 
‘outcome variable’ C , we can express this relationship as 
A → C . However, the direct effect of A on C may be medi-
ated by a variable B . This can be expressed as A → B → C , 
and the validity of the pathway is checked by going through 
four ‘steps’ (e.g., Baron and Kenny 1986), using regressions 
illustrated in Fig. 1.

(1)Y = c1X1 + c2X2 + �,

(2)ŷ = ĉ1X1 + ĉ2X2.

(3)Ŷ = 𝜎(Y)ŷ∕𝜎(ŷ).

Fig. 1   a A diagram illustrating the direct effect c of the causal vari-
able A on the outcome variable C . b A diagram illustrating the direct 
effect a of A on the mediator B , as well as the regression coefficients 
of Eq. 4, b and c′
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First, the coefficient c in Fig. 1a, which describes the 
direct effect of A on C , must be significant. Otherwise, 
there is no effect to be mediated. Second, the coefficient a 
in Fig. 1b, the direct effect of A on B , must also be signifi-
cant to ensure that the mediator is influenced by the causal 
variable. To check the remaining steps, we define a linear 
regression:

The third step is that b must be significant, which means 
that B has an effect on C when accounting for A . The fourth 
requirement for mediation is that the coefficient c′ must be 
non-significant, as this signifies that the outcome C is con-
ditionally independent of A when accounting for B . If all 
the four steps are satisfied, the mediator B fully mediates 
the effect of A on C . We emphasize here that full mediation 
by B does not necessarily mean that B is the only mediator 
(e.g., VanderWeele and Vansteelandt 2014).

2.6 � Significance testing

Bootstrapping is used to calculate statistical significance. In 
each case, a set of 1,000 artificial time series is produced by 
replacing each datum with the datum from a random year 
between 1950 and 2020 (with replacement). Correlations 
or regression coefficients are deemed significant at the 5% 
level (which is used throughout) if they are either less than 

(4)C = c�A + bB,

the 2.5th percentile of the bootstrapped set, or greater than 
its 97.5th percentile.

3 � Results

3.1 � Lagged relationships between SST and rainfall 
variability

In Fig. 2a, the loading pattern of the leading EOF of East 
African rainfall in OND is shown, expressed as the inter-
annual correlation between the detrended precipitation 
and the leading principal component ( PC1 hereafter, defined 
uniquely for OND) in each grid point. EOF 1 describes 52% 
of the rainfall variance and represents large-scale precipita-
tion anomalies affecting most of the region. This agrees well 
with the leading EOF in both Schreck and Semazzi (2004) 
and Wenhaji Ndomeni et al. (2018), both of whom used 
other rainfall data sets and reference periods, and slightly 
different region boundaries. The highest correlations are also 
in good qualitative agreement with the region with a bian-
nual rainfall regime and October/November onset in Dun-
ning et al. (2016; their Fig. 5d). On the interannual scale, the 
time series of PC1 is highly correlated with a time series of 
area-averaged detrended precipitation anomalies inside the 
study region, using land points only ( r = 0.95 ), confirming 
that EOF 1 is a suitable proxy for the large-scale rainfall in 

Fig. 2   a The loading pattern of the leading EOF of East African rain-
fall, with country borders in yellow. The whole region used to com-
pute the EOFs is shown. b Interannual correlation between SSTs in 
August and PC1 , with significant correlations indicated with dots and 

the boundaries of the N34 and IOD regions shown as rectangles. c 
Detrended interannual time series of August N34 and DMI; d Time 
series of PC1 and its prediction P̂C1
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East Africa. PC1 is also significantly correlated with both 
N34 ( r = 0.58 ) and DMI ( r = 0.73 ) in OND.

In Fig. 2b, we show the spatial structure of the lagged 
correlation between tropical SSTs in August and PC1 . Inside 
the NINO3.4 region, the correlations are positive, and the 
oppositely signed correlations in the two IOD regions are 
consistent with a positive lagged correlation with DMI. 
Indeed, in index form PC1 is significantly lag-correlated 
with both N34 ( r = 0.56 ) and DMI ( r = 0.55 ) in August. 
There are indications of significant correlations outside the 
N34 and DMI regions, such as in the Atlantic, but the two 
indices appear to represent a large share of the interannual 
correlations.

Figure 2c shows standardized interannual time series of 
the detrended August SST indices. The correlation between 
the two indices is 0.45. In some years both indices have 
large values with the same sign, such as during the major El 
Niño episodes in 1972 and 1997 and the La Niña events in 
1998 and 2010. Other years, including 2019, have large DMI 
absolute values but weak ENSO conditions.

The time series for PC1 is shown in Fig. 2d, along with 
its (leave-one-out) prediction P̂C1 , where Eqs. 1–3 are used. 
The Eq. 2 regression coefficients are both significant and 
similar in magnitude ( ̂c1 = 0.40 and ĉ2 = 0.37 ). The corre-
lation between P̂C1 and PC1 is 0.64, and although this may 
be a slight overestimation of the actual skill (since the EOFs 
were not computed out-of-sample; see Sect. 2.4), the high 
and significant correlation demonstrates substantial predic-
tive power on the seasonal time scale: about 40% of the 
interannual variability of the first principal component of 
OND rainfall is accounted for by the two SST indices in 
August, 1–2 months before the rainy season onset.

Having demonstrated a temporal link between August 
SST and East African rainfall (Fig. 2d), we now show the 
spatial dependence of this link across East Africa in Fig. 3. 
First, we predict rainfall for each grid point based on the 
two SST predictors, using the same leave-one-out cross-
validation methodology that we used to predict PC1 (i.e., 
Eqs. 1–3). Figure 3a shows the correlation between this pre-
dicted field and ERA5 rainfall for each grid point. Second, 
in Fig. 3b we show the loading pattern of the leading EOF 
(this is the same as Fig. 2a except that we here inverted the 
colours and scaled by 0.7 for easy comparison with Fig. 3a). 
The similarity between the two panels of Fig. 3 shows that 
the parts of East Africa that are most affected by the lead-
ing mode of variability (EOF 1) are also the ones that are 
most skilfully predicted by the August SST indices. It is 
not obvious that the patterns should be similar, as the SST 
indices do not enter in the calculation of the EOFs. However, 
this result is consistent with physical understanding, since 
previous work has shown the spatial expression of the N34 
and DMI influences on East Africa to be strongest along the 
coast of Somalia, Kenya and southeast Ethiopia (MacLeod 

et al. 2021). We expect predictions based on SST indices 
alone to be most skilful in this region. These drivers are also 
known to dominate the variance of OND rainfall, and thus 
we expect the first EOF to also reflect their influence.

As mentioned, the zero-lag correlation with OND rain-
fall is higher for DMI than for N34, whereas for the August 
SST indices, the N34 coefficient ĉ1 is slightly larger than 
the DMI coefficient ĉ2 , We now investigate how the roles 
of the indices change when the initial SST state is taken 
from different months. Table 1 shows that the relative impor-
tance of N34 with respect to DMI is highest for July initial 
states, and thereafter it declines (recall that the IOD peaks in 
September–November). For October initial states, the N34 
coefficient is non-significant, which demonstrates that it is 
the IOD that directly influences the East African rainfall at 
short lags.

Furthermore, a mediation analysis of the effect of August 
N34 on PC1 shows that this effect is fully mediated by DMI 
in OND. Using the notation in Sect. 2.5, we let the causal 

Fig. 3   a The interannual correlation between East African rainfall 
and the rainfall prediction (using leave-one-out cross-validation) 
based on August N34 and DMI, with country borders in yellow. b 
The same EOF pattern as the one shown in Fig. 2a, but scaled by 0.7 
and with inverted colours

Table 1   Eq. 2 regression coefficients for initial SST indices from June 
to October

The number in parentheses indicates a non-significant coefficient, and 
the remaining correlations are significant. The last column shows the 
correlation between the predicted and actual rainfall index

Predictor month N34 coef-
ficient ( ̂c1)

DMI coef-
ficient ( ̂c2)

Correlation 
between P̂C1 and 
PC1

June 0.29 0.29 0.48
July 0.43 0.30 0.60
August 0.40 0.36 0.64
September 0.30 0.48 0.68
October (0.16) 0.61 0.71
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variable A be N34 in August, the mediator B is DMI in 
OND, and the outcome C is PC1 , and then we go through 
the four steps required for mediation sequentially. First, as 
mentioned earlier, c is significant (the correlation between 
August N34 and PC1 is 0.56). Second, the coefficient a is 
also significant with a value of 0.65, representing the ENSO-
leading-IOD relationship (Stuecker et al. 2017). Third, the 
coefficient b in Eq. 4 is significant with a value of 0.63. 
Fourth, the coefficient c′ is non-significant, which shows that 
PC1 is independent of August N34 given DMI in OND.

3.2 � Dynamical pathways

We now investigate PC1 and its prediction P̂C1 in more 
detail. Our main purpose is not to validate the prediction 
model, but rather to use that model as a tool to better under-
stand the dynamical linkages between August SSTs and 
large-scale OND rainfall. Our approach is to investigate 
when and why the linear model fails: when P̂C1 deviates 
from PC1 . There are linear aspects to these failures, but we 
are also interested in nonlinear aspects, and especially large 

deviations between P̂C1 and PC1 . For brevity, we refer to the 
forecast error as �

def

= P̂C1 − PC1.
Before we study the forecast errors, we look at how PC1 

relates to concurrent anomalies of SST, w500 , and u850 . Fig-
ure 4a shows that rainfall and SST anomalies are positively 
correlated in the western part of the Indian Ocean, and 
negatively correlated in the eastern part. This is consistent 
with the positive correlation between DMI and East Afri-
can rainfall. The positive correlations in the eastern Pacific, 
including in the NINO3.4 region, are probably mainly due 
to teleconnections with the IOD region (see Sect. 3.1). For 
the vertical velocity, a large area over the western Indian 
Ocean and East Africa has high positive correlations with 
PC1 , with negative correlations in evidence over the east-
ern Indian Ocean (Fig. 4b). In Fig. 4c, the low-level zonal 
wind is shown to be negatively correlated with PC1 over the 
whole central Indian Ocean. In sum, the correlations over 
the Indian Ocean in all three panels of Fig. 4 are consistent 
with a positive IOD state and an enhanced Walker circula-
tion during periods with higher-than-normal rainfall, and 

Fig. 4   Interannual correlation between PC1 and the OND anomalies 
of the following variables: SST (a); 500 hPa vertical velocity (b); and 
850  hPa zonal wind (c). Significant correlations are indicated with 

dots. In (a), the boundaries of the IOD and ENSO regions are shown 
as rectangles
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a negative IOD state and a suppressed Walker circulation 
during drier-than-normal periods.

We now use Eqs. 1–3 to predict SST, vertical velocity, 
and zonal wind in OND, based on the two SST indices in 
August, just as we predicted PC1 . This is done for all grid 
points individually, and then we compute the correlation 
between the forecast errors Ŷ − Y  and � , where Y  is SST, 
w500 , and u850 , in turn. These correlations are shown in 
Fig. 5, along with yellow contours representing the correla-
tions that were shown in Fig. 4. It is immediately clear that 
the overall patterns in Fig. 5 are highly similar to the patterns 
in Fig. 4, and especially over the Indian Ocean. When too 
much rainfall is predicted, too-positive SST anomalies are 
predicted in the western Indian Ocean (Fig. 5a), with too-
positive overlying w500 anomalies (Fig. 5b), and too-negative 
u850 anomalies are predicted over the Indian Ocean (Fig. 5c). 
In the eastern part of the Indian Ocean, too-negative SST 
anomalies and too-negative w500 anomalies complete the 
Walker circulation signature.

In other words, when the linear East African rainfall 
prediction model fails, similar linear models fail to predict 

SST, vertical velocity, and low-level zonal wind anomalies 
in the areas where said variables are correlated with East 
African rainfall. One interpretation of this finding is that 
the SST indices in August usually predict the Walker cir-
culation in OND quite well, and hence also East African 
rainfall, but when the Walker circulation deviates from the 
expected ‘response’ to the August SSTs, the OND rainfall 
prediction fails.

What could drive an unexpected OND Walker circulation 
response to August SSTs and hence an error in the rainfall 
prediction based on August SST indices? One possibility, 
which we investigate in the next section, is that the SSTs in 
the Indian Ocean evolve substantially between August and 
OND, which again might lead to different SST forcing to the 
one predicted by the linear model.

3.3 � Role of SST changes

The map in Fig. 6a shows the correlation between � and 
ΔSST (defined as the change in SST from August to OND) 
in the Indian Ocean. As ΔSST in the N34 region is not 

Fig. 5   Interannual correlation between � and the OND prediction 
error of the following variables: SST (a); 500  hPa vertical velocity 
(b); and 850 hPa zonal wind (c). Significant correlations are indicated 
with dots, and the yellow contours show the + 0.5 (solid) and − 0.5 

(dashed) isolines for the correlation between PC1 and OND anomalies 
of each variable. In (a), the boundaries of the IOD and ENSO regions 
are shown as rectangles
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significantly correlated with � , the Pacific region is not 
shown. The general pattern is that when too much rainfall 
is predicted, it is because the western part of the Indian 
Ocean cools between August and OND, while the eastern 
part warms. This pattern is compatible with a de-intensifi-
cation of the Walker circulation, which again is consistent 
with decreased East African rainfall. In other words, if DMI 
decreases, the actual rainfall tends to be less than what the 
model predicts. Conversely, when the prediction is too dry, 
it is linked to a Walker circulation intensification due to SST 
warming in the west and cooling in the east, which is linked 
to actual rainfall greater than the predicted rainfall.

Although the significant blue areas in Fig. 6a in the west-
ern Indian Ocean are concentrated to the west of the western 
IOD region, there is clearly a negative correlation between 
changes in DMI and the rainfall forecast error. In Fig. 6b, 
ΔDMI (the change in DMI from August to OND) is plotted 
against � for each year. The correlation is –0.35, which is 
statistically significant. In all the years where DMI decreases 
by more than one standard deviation, the rainfall forecast 
error is positive. However, there are years with large posi-
tive forecast errors where DMI does not decrease notably. In 
the El Niño year of 1987 (see Fig. 2c), the largest positive � 
value is found, but DMI in fact increased slightly between 
August and OND. We also note that large positive ΔDMI 
values are not uniformly linked to negative rainfall forecast 
errors. For instance, the year with the second-largest DMI 
increase (1969), � is positive.

In sum, the correlation of − 0.35 (Fig. 6b) shows that 
about 10% of the rainfall forecast error can be linked lin-
early to DMI changes. However, it is not generally possible 
to know in advance how SSTs will change between August 
and OND, although dynamical climate models may have 
some skill, and a hybrid statistical–dynamical forecasting 

approach appears to be promising (Colman et al. 2020). It 
would be more useful if we could identify a relationship 
between the initial state in August and the subsequent pre-
diction errors in OND, as these could potentially make it 
possible to foresee a priori whether the linear model is more 
likely to fail.

3.4 � Role of initial SSTs

First, to get a qualitative overview of the most severe pre-
diction busts, we study the seven years (roughly 10% of the 
71 years in the study period) with the largest negative errors, 
as well as the seven years with the largest positive errors, 
i.e., when the model is too dry and too wet, respectively. 
For these years, PC1 , its prediction P̂C1 , the error � , and the 
August SST indices are listed in Table 2.

For some of the years, the errors are large because P̂C1 
has the wrong sign, such as in 1952, for which the model 
predicts drier-than-average conditions ( P̂C1 = −0.7 ) but 
the actual rainfall was wetter than average ( PC1 = 0.5 ). In 
the El Niño year of 1987, the model predicts heavy rain 
( ̂PC1 = 1.8 ), yet the actual conditions were drier than nor-
mal ( PC1 = −0.8 ). In other cases, P̂C1 has the right sign, 
but the magnitude is incorrect, such as in 2019, when the 
IOD was strongly positive, for which P̂C1 = 1.0 , but the 
actual rainfall was extremely high (Wainwright et al. 2021): 
P = 2.5.

The too-dry cases shown in Table 2 have no consist-
ent August N34 and DMI sign; across the seven years the 
average state is neutral for both SST indices. Correspond-
ingly the rainfall prediction P̂C1 is also near-zero on aver-
age, whilst observed rainfall is positive in all years, with 
a strongly positive average PC1 value (1.2). The situation 
is different for the seven too-wet cases. Here there is a 

Fig. 6   a Interannual correlation between ΔSST (change in SST 
between August and OND) and � . Significant correlations are indi-
cated with dots, and the rectangles indicate the outlines of the IOD 

regions. b Scatterplot of � on the x-axis versus ΔDMI on the y-axis 
(both in standard deviations). The colours of the circles correspond 
to the years



1051Lagged oceanic effects on the East African short rains﻿	

1 3

consistent sign in August N34 and DMI values: both indi-
ces are positive in nearly all cases and strongly positive on 
average. The average rainfall prediction P̂C1 in these too-
wet years is strongly positive (1.5), as expected from the 
SST indices, but there is no consistent sign in the observed 
rainfall indices wet forecasts, showing a near-zero average 
PC1 value of –0.1.

We now return to all 71 years to more comprehensively 
evaluate the link between the August SST state and the 
rainfall prediction error. In Fig. 7a, the correlation between 
August SST anomalies and � is shown. This shows a clear 
linear relationship between � and both ENSO and the IOD, 
with positive phases of the SST indices in August tending 
to result in too-wet rainfall predictions, and negative phases 

tending to result in too-dry predictions. We quantify this 
with a correlation between � and the indices, resulting in 
0.36 and 0.34 for N34 and DMI, respectively. This is an 
important result, but the last row of Table 2 shows that, for 
the most extreme cases, there is an asymmetry in that the 
too-wet predictions are linked to positive initial ENSO and 
IOD states, but the too-dry cases are not linked to negative 
initial ENSO and IOD conditions.

This asymmetry points to a nonlinear aspect to the rela-
tionship between the initial oceanic state and � , and we 
examine this potential link in Fig. 7b by showing the cor-
relation between |�| and August SST anomalies for all the 
71 years. Clearly, both negative and positive rainfall predic-
tion errors are correlated with both ENSO and the IOD in 

Table 2   The seven years in each category (too-dry and too-wet), ranked by the rainfall forecast error magnitude

The unit is standard deviations. Note that rounding errors leads to some apparently inconsistent ε values

Too-dry forecasts Too-wet forecasts

Year � PC1 P̂C1
August N34 August DMI Year � PC1 P̂C1

August N34 August DMI

1961  − 1.7 2.2 0.5  − 0.1 1.2 1987 2.6  − 0.8 1.8 2.3 0.5
2019  − 1.5 2.5 1.0  0.0 2.1 1966 2.2  − 1.0 1.3 0.5 1.6
1951  − 1.4 2.5 1.1 1.4 0.5 1976 1.6  − 0.7 0.9 0.4 1.1
1989  − 1.4 0.1  − 1.3  − 0.8  − 1.4 2012 1.4 0.2 1.7 0.9 2.0
1984  − 1.3 0.2  − 1.1  − 0.5  − 1.3 2015 1.2 0.8 2.1 2.5 1.0
1978  − 1.1 0.6  − 0.5  − 0.1  − 0.8 1972 1.0 1.5 2.5 2.7 1.5
1952  − 1.1 0.5  − 0.7  − 0.2  − 1.0 2003 1.0  − 0.4 0.5  − 0.1 1.0
Average  − 1.4 1.2  − 0.1  − 0.1  − 0.1 Average 1.6  − 0.1 1.5 1.3 1.2

Fig. 7   Maps of the interannual correlation between SST anomalies in August and � (a) and its magnitude, |�| (b). Significant correlations are 
indicated with dots, and the boxes indicate the outlines of the N34 and IOD regions
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August. In particular, we note that the SSTs in both IOD 
regions show a stronger correlation with |�| than with � 
(Fig. 7a). We now investigate these asymmetric relationships 
further by dividing the 71 years into three bins, organized by 
ascending initial N34 and DMI index values, in turn.

The top row of Fig. 8 shows boxplots (e.g., Krzywin-
ski and Altman 2014) representing the distribution of the 
forecast error � in each bin. We first note that the median of 
each bin increases from left to right, reflecting the positive 
linear relationship between � and the August SST indices 
seen in Fig. 7a. For the N34 index in Fig. 8a, we see that 
the standard deviation of the errors is lowest in the first bin, 
where the N34 index is negative. In the third bin, where 
N34 is positive, the range of the errors is largest, and the 
lowermost whisker of the rightmost bin extends as far into 
negative territory as the lowermost whisker of the leftmost 
bin. Similar behaviour is seen for DMI in Fig. 8b, but the 
standard deviation of the third bin is more than twice as large 
as the standard deviation of the first bin.

In sum, the boxplots in the top row of Fig. 8 illustrate the 
nonlinear relationship between the initial SST indices and 
the rainfall forecast error � . When the SST indices are posi-
tive in August, the error of the linear prediction model is less 

predictable and spans a larger interval than when the SST 
indices are neutral or negative (see also Fig. 7b), making � 
difficult to predict a priori.

Figure 8c shows that ΔDMI is also both linearly and non-
linearly associated with August DMI values. The correlation 
between August DMI and ΔDMI is significant and nega-
tive (–0.37), which implies that, on average, DMI regresses 
towards the mean between August and OND. The nonlin-
earity of the relationship is clear: the standard deviation of 
ΔDMI in the bin with the highest August DMI values is 
substantially higher than the standard deviation in the bin 
with the lowest initial values.

3.5 � Mediating role of DMI changes

In the preceding sections, we have shown that both the rain-
fall forecast error � and ΔDMI are correlated with August 
DMI values. We now use the mediation analysis framework 
in Sect. 2.5 to show that ΔDMI fully mediates the lagged 
effect of August DMI on � . We note, for completeness, that 
ΔDMI is significantly correlated with ΔN34, with a correla-
tion coefficient of 0.28, but as there is no significant effect of 
ΔN34 on � , ΔN34 is not a potential mediator. We also note 

Fig. 8   Top row: Box plots of the distribution of � , sorted into bins 
according to August N34 (a) and DMI (b) values (increasing from 
left to right). Each rectangle extends from the lower (Q1) to the upper 
quartile (Q3) of � , and the horizontal lines show the median. The 
upper ‘whiskers’ extend to the highest data points lower than Q3 + 1.5 
IQR, where the interquartile range IQR = Q3–Q1, and the lower 

whiskers extend to the lowest data points greater than Q1 − 1.5 IQR. 
Outliers are shown with circles. The bracket under each bar indicates 
the range of the SST index values, and under that the standard devia-
tion of � in each bin is shown. c ΔDMI by ascending August DMI 
values, with conventions as in the two preceding panels
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that we checked whether ΔDMI is a mediator of the lagged 
effect of August N34 on � , but it is not.

In Fig. 9, we have updated Fig. 1 with the names of the 
causal variable A (DMI in August), the potential media-
tor B (ΔDMI), and the outcome variable C ( � ). We now 
go through the four steps required for mediation. First, we 
already know from the previous section (see Fig. 8b) that 
the positive correlation coefficient c in Fig. 9a is significant. 
Second, the previous section also showed that negative cor-
relation coefficient a in Fig. 9b is significant. Using Eq. 4, we 
can calculate the coefficients b and c′ , which are − 0.30 and 
0.21, respectively. Bootstrapping shows that b is significant, 
but c′ is non-significant (although its value is close to the 
2.5th percentile of the bootstrapped set of artificial c′ coef-
ficients). This means that all the four steps in the mediation 
check are satisfied, and we have shown that ΔDMI mediates 
the lagged effect of August DMI on � . Note that even if c′ 
had been significant, its value is considerably smaller than 
the coefficient c

(
c�∕c = 0.61

)
 . Cases for which the first three 

steps are satisfied, but where c′ is significant but |c�∕c| < 1 , 
are often referred to as ‘partial mediation’.

4 � Summary and discussion

We have studied the lagged relationship between tropical 
SSTs in August and the East African short rains from Octo-
ber to December. By working with detrended ERA5 reanaly-
sis data from 1950 to 2020, we obtained the following main 
results, which are discussed further here:

1.	 A linear prediction model based on the ENSO and IOD 
states in August accounts for about 40% of the interan-
nual variance of an East African short rains index, which 

again accounts for more than half of the spatial and tem-
poral OND rainfall variance in the region. Although 
the N34 index in August is a significant predictor of 
OND rainfall, this effect is fully mediated by the IOD 
index DMI in OND. The high prediction skill of the 
linear model is consistent with previous research and 
here we confirm the result for a long 70-year record. 
Since linear regression models are still widely used in 
East Africa, it is important to know why and when such 
models fail. For this reason, the remaining analysis uses 
this linear model, and particularly its errors, as a tool 
to study the dynamical linkages across time and space 
between August SSTs and OND rainfall, as well as to 
assess whether it is possible to predict the forecast errors 
a priori, based on the initial SSTs.

2.	 Tropical SSTs in August are linked to the East African 
short rains in OND through a Walker circulation across 
the Indian Ocean. We investigated the correlations 
between the linear rainfall prediction errors and errors 
of similarly defined linear prediction models for vertical 
velocity, low-level zonal wind, and tropical SST. The 
rationale for this approach is that areas where the error 
correlations are positive pinpoint areas where the other 
variables ‘communicate’ the lagged effects of the SSTs 
on the rainfall. When too much rainfall is predicted, a 
too-strong Walker circulation is simultaneously pre-
dicted, and when the linear model predicts too little rain, 
the predicted Walker circulation is too weak.

3.	 OND rainfall forecast errors are also linked to changes 
in Indian Ocean SSTs between August and OND. On 
average, negative DMI changes—cooling in the western 
and warming in the eastern parts of the basin—are asso-
ciated with positive rainfall prediction errors. In other 
words, the model predicts too much rain because DMI 
and the Walker circulation are weaker in OND than they 
are predicted to be based on the state in August. Con-
versely, too little rain is predicted in the opposite case 
when the Walker circulation intensifies between August 
and OND. However, there are several exceptions to this 
‘rule’, and the DMI changes only account for just over 
10% of the prediction errors.

4.	 We identified both linear and nonlinear linkages across 
time between rainfall forecast errors in OND with the 
oceanic state in August. The linear part of this relation-
ship is that the sign of the ENSO and IOD conditions 
in August is correlated with the sign of the subsequent 
prediction error (the nonlinear part is discussed below). 
This can potentially be exploited by correcting rainfall 
predictions upfront. For example, when DMI and N34 
are positive in August and the linear model predicts 
higher-than-average rainfall, the prediction might be 
adjusted downwards a priori. Referring to the list of too-
wet forecasts in Table 2, such an approach would have 

Fig. 9   a, A diagram illustrating the direct effect c of the causal vari-
able A (August DMI) on the outcome variable C ( � ). b, A diagram 
illustrating the direct effect a of A on the mediator B (ΔDMI), as well 
as the regression coefficients of Eq. 4, b and c′
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worked in 1987, when the linear model predicts abun-
dant rainfall, but in reality the conditions were drier-
than-normal. It would also have worked in the high-DMI 
years 1966, 1976, and 2012, and it would have worked in 
1972 and 2015, when both N34 and DMI were strongly 
positive. However, the approach would only have been 
successful for four (1972, 1984, 1989 and 2003) of the 
seven years with the largest negative rainfall predic-
tion errors, when the predicted rainfall might have been 
adjusted upwards if either N34 or DMI (or both) had 
been negative. Notably, the approach would not have 
worked in 2019, when the region experienced massive 
flooding (Nicholson et al. 2021; Wainwright et al. 2021). 
The 2019 case is a telling example of the nonlinear rela-
tionship between initial SST conditions and subsequent 
rainfall errors, which we discuss next.

5.	 The relationship between OND rainfall forecast errors 
and the August SST conditions also have nonlinear 
aspects. By separating the 71  years into three bins 
according to August N34 and DMI, we showed that the 
bin with the highest initial index values has substan-
tially larger error variability than the bin with the low-
est initial values. A practical implication is that an a 
priori adjustment of the forecast is less reliable when 
the ENSO and/or the IOD are in the positive phase in 
August. The 2019 season is a prime example. In August, 
DMI was 2.1 standard deviations above normal, and as 
the model prediction for 2019 is already too dry, a fur-
ther downward adjustment of the prediction based on the 
positive IOD state would have exacerbated the forecast 
error. Examples such as this are an argument for using 
coupled dynamical models, which one can hope are or 
will be able to capture non-linear evolutions of SSTs and 
Walker circulations in and over the Indian Ocean.

6.	 Despite the nonlinear nature of the lagged relationships 
between August SSTs and short rains prediction errors, 
we identified a mechanism which mediates the lagged 
linear effect of the IOD state in August on these errors, 
namely changes in DMI between August and OND. 
The causal pathway is as follows. The DMI in August is 
negatively correlated with the change in DMI between 
August and OND. This means that both positive and 
negative August values tend to regress toward the mean 
(which is a neutral index). The DMI in August is posi-
tively correlated with the rainfall in OND, but it is also 
positively correlated with the forecast error. This means 
that when DMI is positive in August, the linear model 
predicts higher-than-normal rainfall, but it often predicts 
too much rainfall, as it does for all the seven years in 
the right part of Table 2. The mediation by the change 
in DMI from August to OND shows that one reason for 
this is that DMI tends to become more neutral between 
August and OND, which again means that the Walker 

circulation in OND is less vigorous than expected by 
the prediction model in August. This often means that 
it rains less than predicted. It is important to emphasize 
that although the DMI change fully mediates the direct 
effect of August DMI on the OND forecast error, there 
may be other mechanisms that also mediate this effect. 
The simple mediation framework used here does not 
imply exclusivity. Finding more mediators of the effect 
investigated here would further enhance our understand-
ing of the lagged relationships between tropical SSTs 
and East African rainfall.

In summary, this study has shown that statistical short 
rains forecasts based on the IOD and ENSO states in August 
are quite skilful. However, the linear prediction model has 
a systematic bias which is conditional, in both a linear and 
a nonlinear sense, on the initial state. In some cases, an a 
priori adjustment of the forecast can lead to improved fore-
casts, but the nonlinear characteristic of the forecast bias 
makes such adjustments perilous, especially when the initial 
IOD state is positive. These results highlight knowledge gaps 
around the relationships between the East African short rains 
and the large-scale drivers which underlie the high predict-
ability of this season.
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