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A deep learning-based hybrid model of global
terrestrial evaporation
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Terrestrial evaporation (E) is a key climatic variable that is controlled by a plethora of

environmental factors. The constraints that modulate the evaporation from plant leaves (or

transpiration, Et) are particularly complex, yet are often assumed to interact linearly in global

models due to our limited knowledge based on local studies. Here, we train deep learning

algorithms using eddy covariance and sap flow data together with satellite observations,

aiming to model transpiration stress (St), i.e., the reduction of Et from its theoretical max-

imum. Then, we embed the new St formulation within a process-based model of E to yield a

global hybrid E model. In this hybrid model, the St formulation is bidirectionally coupled to the

host model at daily timescales. Comparisons against in situ data and satellite-based proxies

demonstrate an enhanced ability to estimate St and E globally. The proposed framework may

be extended to improve the estimation of E in Earth System Models and enhance our

understanding of this crucial climatic variable.
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E is a key element of the global water cycle: approximately
two-thirds of the precipitation over land is evaporated back
into the atmosphere1. Due to its influence on water vapor

and cloud feedbacks, E plays a crucial role in global warming, and
its projected increase is expected to intensify the global hydro-
logical cycle2. Changes in E will not only have far-reaching
consequences on water availability and climate3,4, but can also
severely affect the occurrence of hydroclimatic extremes5 and the
ability of ecosystems and river basins to recover from them6–8.
Moreover, E is an important indicator of vegetation stress, thus it
is widely used for estimating drought conditions9 and their
implications for water management, ecosystem health, and agri-
cultural production10. Its reliable representation in hydrological
and climate models is therefore crucial, and so is its accurate
global monitoring from space. However, E cannot be derived
directly from satellite-based measurements, which is why even
retrieval algorithms tend to rely on process-based formulations11.

Several approaches exist to estimate E at large scales using
process-based models. Some of them simulate E as a residual of
the energy balance, or derive it empirically using vegetation,
temperature, and radiation data. These approaches are primarily
employed in high-resolution remote sensing, especially in agri-
cultural areas, owing to its minimal input data requirements12,13.
Other models employ a flux-based approach to derive E using
more physically-founded methods, such as the Monin-Obukhov
similarity theory, to calculate the gradients of specific humidity
between the atmosphere and land surface (vegetated or non-
vegetated), and explicitly model the surface resistance to the
diffusion of water vapor. This approach is prevalent in climate
models14. Finally, the third approach, commonly used in
hydrological models15 and satellite retrieval algorithms16–18,
involves the prior calculation of potential evaporation (Ep), a
theoretical maximum for the given land cover and meteorological
conditions. Subsequently, actual E is estimated by reducing Ep by
a certain factor that accounts for the sub-optimal conditions of
evaporation due to (e.g.,) water scarcity; this is referred to here as
‘evaporative stress’ (S), and more precisely ‘transpiration stress’
(St) when applied to plant transpiration. Independent of the
approach, significant uncertainties remain in the current global
estimates of E, and this applies to both climate models19 and
satellite-based algorithms20.

In this study, we focus on stress-based models of E, the most
common approach to derive global E from satellite data21. In such
models, uncertainty arises from the formulations of Ep and S (and
particularly St). While several process-based formulations of Ep
exist22,23, they differ in their estimates substantially, and even the
mere definition of Ep as a concept remains elusive24. Nevertheless,
the chosen Ep function forms the most process-based part of the
stress-based E models, and while parameters within Ep formula-
tions can be better constrained with more data25, the opportu-
nities to improve stress-based models via modifications to Ep
remain limited26. Therefore, we focus on the main source of
uncertainty: the S formulation. This uncertainty arises from the
lack of understanding of the response of plant transpiration (the
major source of E in vegetated ecosystems) to environmental
stressors, particularly at the spatial resolution at which global
models operate. Here, we note that the focus of this study is the
stress which limits vegetation transpiration below the atmo-
spheric potential, and therefore can be triggered even under
conditions in which plants do not experience stress from a
physiological standpoint. The transpiration stress (i.e., St) should
encapsulate multiple interacting hydroclimatic variables that
affect different aspects of plant physiology and structure which
affect transpiration in a highly non-linear manner at multiple
time scales27. However, St formulations used in existing global

models are simple, not capturing all the influences and interac-
tions among the stressors. This occurs because they are based on
a limited number of experimental studies whose extrapolation to
global scale is hindered by their local nature28–30. The complexity
of the interactions among these stressors, and the fact that they
involve physiological processes that are unobserved, calls for
machine learning techniques as a suitable solution to this long-
standing challenge.

Machine learning methods have become popular in Earth
sciences in recent years, enabling the discrete classification of
important geo-spatial variables which are hard to map, such as
clouds31, soils32, and forest cover33; but also estimation of
dynamic variables, such as carbon fluxes34, precipitation35, or
river discharge36. In fact, machine learning models trained on
in situ measurements of E and other hydro-meteorological cov-
ariates, have already been used to estimate global E34. However,
pure machine learning–based approaches have several dis-
advantages in realistically modeling Earth system processes.
Machine learning models do not obey the physical limits which
constrain different scales, such as the closure of water and energy
balances. Further, the black-box nature of machine learning
hinders the interpretability, an important requirement if the
influence of individual covariates needs to be realistically repre-
sented to improve process understanding. More importantly, the
use of pure machine learning methods for specifically estimating
Et at global scales is hindered by the fact that in situ observations
of Et have a small footprint which is not representative of Et at the
coarser grid scales at which global models operate.

An emerging research direction, and the approach adopted in
this study, is to combine process-based and machine learning
models in a symbiotic manner. ‘Hybrid’ models retain the
advantages of process-based models, i.e., physical consistency and
interpretability, and those of machine learning models, i.e., more
realistic data-driven formulations of processes that are insuffi-
ciently understood37. Several proof-of-concept implementations
have demonstrated the advantages of hybrid modeling in climate
sciences with machine learning sub-models employed for repre-
senting different processes38,39 or for improved model parameter
discovery40. For modeling E in particular, attempts have been
made to physically constrain pure machine learning models to
improve the accuracy of E estimates25,41. However, an important
research question is whether hybrid models are capable of
operating at a global scale with machine learning used to replace
specific process formulations.

Here machine learning, specifically deep learning, is used to
learn the functional relationship between covariates (St drivers)
and target process (St). We exploit recent progress in satellite-
based remote sensing and an unprecedented number of in situ
observations spread across the globe to develop a novel
formulation of St from the ground-up without any prior
assumptions. Therefore, the objective of using deep learning is
fundamentally different (development of an improved for-
mulation of the transpiration stress response of vegetation)
from that of purely machine learning-based models which are
designed to predict Et directly and suffer from scaling issues
described above. Further, we implement the new formulation of
St, and execute it online, in a process-based model of global
evaporation which provides physical constraints to the deep
learning-based St formulation. In doing so, we develop a hybrid
model in which the new deep learning-based formulations of St
are tightly coupled to the process-based, aiming to simulate
daily E at the global scale. A comprehensive evaluation of the
model is carried out using in situ observations and gridded
datasets, including comparisons to pure machine learning and
process-based approaches.
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Results
Hybrid model architecture. A hybrid model at the highest level
of abstraction is made up of two components: a process-based
host model and machine learning-based formulations embedded
in the host for representing certain processes37. For the process-
based model, we choose the Global Land Evaporation Amsterdam
model (GLEAM)16,42. GLEAM simulates E as a summation of its

constituents: Et, bare-soil evaporation (Eb), open water evapora-
tion (Ew), snow sublimation (Es), and interception loss (Ei). Et and
Eb are estimated for every grid cell of the global model using a
Priestley Taylor-based formulation for Ep and their respective
evaporative stress factors (St and Sb), weighted by the fractional
coverage of short vegetation, tall vegetation, bare-soil, and open
water (Fig. 1). Interception is based on the Gash analytical

Fig. 1 Hybrid model architecture. Schematic of the hybrid terrestrial evaporation model, including the representation sub-grid heterogeneity and the
difference in the footprints of the deep learning model and the hybrid model. Ei is interception, Ep is potential evaporation, S is the evaporative stress factor,
St is transpiration stress, E is actual evaporation, P is precipitation, Rn is net radiation, Ta is air temperature, VOD is vegetation optical depth, VPD is vapor
pressure deficit, SWi is incoming shortwave radiation, and CO2 is carbon dioxide. The red arrows indicate modeling steps which are exclusive to the
processed-based model, the green arrows are steps which have been added in the hybrid, and the black arrows are steps common to both the models.
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model43. GLEAM contains a multi-layer soil water balance model
in which satellite-based surface soil moisture data are assimilated.
Sb is a function of soil moisture content (see Methods), while St
accounts for the transpiration stress caused by shortage of plant
available water (PAW) and sub-optimal phenological state
(represented by vegetation optical depth, VOD). In nature,
however, several additional stressors are responsible for limiting
Et below its potential, which are not considered within the St
formulation of the process-based GLEAM. The exact responses of
Et to these stressors are ecosystem-dependent and difficult to
encapsulate into a single stress factor (St).

Here, using deep learning and reliable field observations, we
aim to recover an St that correctly encodes the functional
relationships among the multiple stressors existing in nature.
Deep learning models are developed at daily time scales using
observational data from a large network of eddy covariance or
flux towers and sap flow measurements. The models are
developed separately for short (231 flux towers and 173,000 data
points) and tall vegetation (137 flux towers and 90 sap flow
measurement sites, 125,000 data points) (see Methods for the
details of the target variable and covariates used in the deep
learning models). We consider four other transpiration stressors,
in addition to PAW and VOD, that are known to regulate
stomatal conductance and hence influence St: (a) vapor pressure
deficit (VPD), as an indicator of atmospheric dryness44, (b) air
temperature (Ta), to include the effects of sub-optimal tempera-
ture and heat stress45, (c) incoming shortwave radiation (SWi), to
incorporate the influence of light limitation46, and (d) atmo-
spheric carbon dioxide (CO2) concentration, which exhibits a first
order control on stomatal opening47. We note that the slowly
evolving effects on transpiration of long-term ecological or plant
trait adaptation in response to rising CO2 (as reflected on water
use efficiency trends) may not be adequately captured by training
the machine learning algorithms on the limited record length of
available flux tower and sap flow measurements48. The potential
effect of phosphorous and nitrogen limitations on St49 is not
considered in this study due to the lack of dynamic global data. In
addition, the influence of plant traits such as root depth,
isohydricity, and other anatomical and morphological traits,
and their fine-scale or inter-species variations is not explicitly
considered, since reliable data for upscaling such traits so that
they can be implemented within a global model is not available.

Finally, the hybrid model of global E is created by coupling the
deep learning-based model of St to the GLEAM process-based
model. At every (daily) time step, and at every (0.25 degree) grid
cell of the global model, the soil water balance module of GLEAM
uses precipitation (P) to compute PAW. Then, PAW, VOD, Ta,
VPD, SWi, CO2 are transferred to the (offline-trained) deep
learning model (see Methods). The deep learning model is run in
predictive mode to generate St. St is then used to constrain Ep and
thus compute E by the process-based host model. Finally, E is
used to update the soil moisture (and PAW) before the process is
repeated for next time step (Fig. 1).

Validation with in situ measurements. St and E estimates from
the hybrid model are validated at 458 in situ monitoring stations (see
Figs. 12 and 13 in Supplementary Information) sourced from several
flux tower and sap flow databases (refer to the Methods section for
the calculation of St from flux tower and sap flow data). The hybrid
model performance is compared to that of the fully process-based
model. Violin plots and spatial maps illustrate the Kling-Gupta
Efficiency (KGE), a metric which combines correlation, variability
bias, and mean bias (see Methods). KGE values theoretically range
from−∞ to 1.0, with values greater -0.41 implying that the model is
a better predictor than the mean seasonal cycle50.

The violin plots (Fig. 2a) show the distribution of KGE values
calculated for the 231 stations located in short vegetation
ecosystems, and the 227 stations in located in tall vegetation
ecosystems (137 flux tower sites and 90 sap flow measurement
stations). We see that both the process-based model and the
hybrid model accurately estimate St in short vegetation
ecosystems (including Croplands, Shrub and Grasslands, and
Wetlands) and tall vegetation ecosystems (consisting of Broadleaf,
Needleleaf, and Mixed forests)—see Table 3 in Supplementary
Information for station-wise land cover classification. For most
stations (>75%), KGE values from the process-based model are
higher than −0.41. However, the deep learning model of St
improves these results, particularly over tall vegetation—see
Fig. 2a. The higher KGE is attributable to improvements in the
bias and variability components of the KGE rather than the
correlation component—refer to Figure 1 in Supplementary
Information for violin plots of correlation and root mean square
error (RMSE). While the average correlations of the process-
based model estimates of St are similar to those by the hybrid
model, the RMSE of the hybrid model tends to be substantially
lower, particularly for tall vegetation ecosystems.

Next, we check whether the improvement in the estimation of
St in the hybrid model is propagated to the simulation of E. From
Fig. 2b, it is evident that the improvements in St are not linearly
translated to E. This can be attributed to the fact that the vast
majority of the flux towers and sap flow sites are in energy-
limited regions, where E dynamics are influenced more by Ep than
by St. Overall, both models exhibit high, and similar, KGE values
(median value of approximately 0.5) for short vegetation. For tall
vegetation, the hybrid model outperforms the process-based
model in terms of KGE values. In terms of correlation and RMSE,
both models perform similarly (see Fig. 1 in Supplementary
Information): the process-based model exhibits marginally higher
correlations, while the RMSE of the hybrid model is lower for
both vegetation classes. We also compare the estimates of E from
the hybrid model with that of a purely machine learning-based
dataset, FLUXCOM (Fig. 2 in Supplementary Information). We
see that while the overall performance of both approaches is
similar, the hybrid model tends to outperform FLUXCOM in
forest (tall vegetation) ecosystems.

To understand the difference between the hybrid and process-
based models better, we compare the spatial distribution of
differences in KGE values for St and E estimates from the two
models for different geographical zones (Fig. 3, also see Figs. 3
and 4 in Supplementary Information for absolute values of KGE
for St and E). In North America (NA), which has the largest
number of flux towers and sap flow sites, the hybrid model
outperforms the process-based model in estimating St and E,
especially in the humid eastern and north-eastern areas. In
comparison, both models tend to inaccurately simulate St in the
arid south-west region. In Europe (EU), the hybrid model
performs better than the process-based model in estimating
St across the majority of the flux tower stations, including stations
which are located in the relatively arid south. However, in Asia
(AS) and rest of the world (RW), the performance of the hybrid
model is very similar to the process-based model. One reason
could be that the AS and RW regions have a very sparse
distribution, and thus flux towers and sap flow sites in those
ecosystems may have distinct biophysical characteristics from
the majority of sites in the training database. Further, we compare
the spatial maps of correlation and RMSE (see Figs. 5–8 in
Supplementary Information) to understand the source of the
disparity in KGE values. In terms of correlation, the two models
perform very similarly to each other across the different regions.
Therefore, the major source of improvement in the hybrid model
can be traced to the better estimation of the variability seen in the
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a b

Fig. 2 Summary of in situ validation of the hybrid and process-based models. a, b Violin plots showing the distribution of the Kling-Gupta Efficiency
(KGE) metric for the transpiration stress factor (St) and evaporation (E), respectively, calculated for all flux tower and sap flow measurement sites. The
KGE distribution for the hybrid and process-based models are classified according to short and tall vegetation types. The dashed lines represent the median
(large dashes) and the interquartile range (small dashes). The red line represents a KGE value of -0.41, above which a model prediction or simulation is
considered better than the mean seasonal cycle. For the sap flow sites, transpiration estimates (Et) instead of E are used.

St

St St

E

E

E

St E

Fig. 3 In situ comparison of the hybrid and process-based models. Maps showing the difference in the Kling-Gupta Efficiency (KGE) metric between the
hybrid model and process-based model for the transpiration stress factor (St) and evaporation (E) calculated using observations at flux tower and sap flow
measurement sites in different geographical zones: North America (NA), Asia (AS), Europe (EU), Rest of the World (RW). Blue (red) tones indicate an
improvement (degradation) in the hybrid model compared to the process-based counterpart. For the sap flow sites, transpiration estimates (Et) instead of E
are used.
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observation, a fact supported by the violin plots (Figure 1 in
Supplementary Information). Further, we notice that the
discrepancy in the St estimates between the two models, does
not translate to an improved E estimation, particularly in energy-
limited regions (Fig. 3), which are poorly represented in the
training data. Finally, we also compare the performance of the
hybrid model against FLUXCOM at individual flux tower and sap
flow measurement sites (Fig. 9 in Supplementary Information).
Similar to the comparison with the process-based model, we see
that the hybrid model underperforms in the relatively arid
western parts of the US and the Iberian Peninsula.

Comparison with global datasets. The goal of the hybrid model
is to generate spatially and temporally continuous estimates of St
and E over the entire continental surface. Therefore, it is
important to also validate it against independent global estimates
of both St and E. Therefore, St and Et seasonal aggregates are
compared with other global datasets in Fig. 4 and Fig. 5,
respectively. To further investigate the realism of these global
patterns, the temporal dynamics are investigated in Fig. 6 by
displaying correlation maps based on monthly time series.

Due to the absence of observations of St at those scales, we
choose a satellite-retrieved proxy that has been shown to represent
the transpiration stress experienced by vegetation reasonably well:
the ratio of solar-induced chlorophyll fluorescence to
photosynthetically-active radiation (SIF/PAR)51 (see Methods).
We note here that the units and range of SIF/PAR values are

different from those of St, but that the spatial gradients and
temporal dynamics are expected to be comparable. We also caution
that the comparison may not be appropriate under extreme
conditions and higher CO2, where carbon and water cycles may
decouple52. In June-July-August (JJA), summer season in the
Northern Hemisphere, we see that the spatial patterns of St in the
hybrid model are similar to those in the process-based model
(Fig. 4a, c). However, the hybrid model captures better the higher
transpiration stress that is suggested by the low values of SIF/PAR in
the higher latitudes (Fig. 4e). For December-January-February
(DJF), the picture is similar; St in the higher latitudes is accurately
captured by the hybrid model (Fig. 4b,d,f). Similarly, we see that the
hybrid model represents the stresses in the Congo, Amazonian and
Eastern Asian rainforests accurately, both in JJA (Fig. 4a) as well as
DJF (Fig. 4a). Figure 6a, c shows the temporal correspondence
between St and SIF/PAR for the hybrid and process-based models,
respectively, while Fig. 6e shows the difference between the two
previous maps. We see that the hybrid model exhibits a positive
correlation with SIF/PAR over a majority of the continental surface
with parts of Amazonia, Congo, and South East Asia (Fig. 6a) being
an exception. The hybrid model St shows a better correlation with
SIF/PAR in eastern China and in northern latitudes—compare
Fig. 6a, c. In contrast, the process-based model shows a higher
correlation in large parts of western North America, Europe, and
Australia. In addition, the hybrid model shows a marked
improvement in the spatial correlation with SIF/PAR, both in the
JJA season (0.66 vs. 0.59) and in the DJF season (0.42 vs. 0.34).
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Fig. 4 Global scale evaluation of modeled transpiration stress. Comparison of the seasonal mean transpiration stress factor (St) from the processed-
based and hybrid models and the ratio of solar-induced chlorophyll fluorescence and photosynthetically-active radiation (SIF/PAR) for June-July-August
(JJA) a, c, e and December-January-February (DJF) b, d, f seasons. Note: The unit of measurement of SIF is mWm2/sr/nm whereas PAR is in W/m2.
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We also compare the E estimates from the hybrid and process-
based models with a purely machine learning-based E dataset
(FLUXCOM) which is trained on a subset of the global flux
towers used in this study34. We see that in both seasons, JJA and
DJF, the spatial patterns of E from the hybrid and process-based
models are similar to those from FLUXCOM (Fig. 5). Regions of
divergence are seen in the northeastern parts of South America,
and southern and eastern Africa, where the FLUXCOM E
estimates are higher than those of the hybrid and process-based
models, especially during JJA. The correlation maps (Fig. 6b, d)
show a high correspondence between the hybrid model estimates
of E and FLUXCOM. A major region of divergence that stands
out in both the hybrid and process-based models is Amazonia.
This may relate to the fact that very few stations are available in
tropical forests for model training, and therefore both the
estimates of FLUXCOM and the hybrid model tend to be more
uncertain there, and it may also reflect the lack of explicit
consideration of interception loss as a component of E in
FLUXCOM. Meanwhile, the difference between the correlations
of the hybrid and process-based model with FLUXCOM is
nominal (Fig. 6f). The hybrid model also shows mild improve-
ments in the spatial correlation to FLUXCOM, both during JJA
(0.84 vs. 0.81) and DJF (0.95 vs. 0.94).

Discussion
The growing complexity of large-scale Earth system and climate
models requires increasingly high computational resources. More
importantly, processes are frequently represented based on

limited experimental understanding and are thus uncertain in
their application at larger scales. Hybrid modeling approaches
have the potential to reduce the ill-effects of over-parameteriza-
tion, reduce computation times, and even improve accuracy in
process representation53. Here, we focus on one of the main
unknowns in the global water cycle and a key variable in climate
models: terrestrial evaporation (E). We developed and applied a
global-scale hybrid model of E, in which a deep learning-based
formulation of transpiration stress was embedded within a
process-based model at daily timescales. We showed that the deep
learning model, designed without a priori assumptions, and based
on expert knowledge, is overall more accurate than the traditional
process-based counterpart at capturing the non-linearly inter-
acting processes that yield transpiration stress. The biggest
improvement is seen in forested (tall vegetation) regions, espe-
cially in northern latitudes. This has important implications for
constraining transpiration estimates in tropical, temperate, and
boreal forests which contribute a major part of the global
transpiration54. The study also highlights a limitation of any deep
learning model, in which sufficient availability of training data is
crucial: the majority of the flux towers and sap flow measurement
sites used for training are located in North America and Europe.
This is especially relevant for modeling Earth system processes
that exhibit large regional (and local) variability, and thus for
which the ability of any data-driven formulation to generalize
over the entire globe will by default be imperfect. From a com-
putational perspective, the model was developed in TensorFlow, a
popular Python library for deep learning, which scales across a
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Fig. 5 Global scale evaluation of modeled evaporation. Comparison of the seasonal aggregates of evaporation (E) from the processed-based and hybrid
models compared with a purely machine learning-based model trained directly on evaporation from FLUXNET sites as the target variable (FLUXCOM34)
for JJA a, c, e and DJF b, d, f seasons. Note: The units of E is mm/month.
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wide range of hardware, operating systems, and programming
languages. Therefore, the transpiration stress model is agnostic of
the host model, and hence can be embedded in different global
scale Earth system models.

Methods
Evaporative stress formulation in the process-based model. In the conven-
tional, process-based GLEAM, the total evaporative stress (S) is composed of St and
Sb. St is defined as

St ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VOD
VODmax

s

1� wc � ww

wc � wwp

 !2 !

ð1Þ

where VODmax is the maximum (99th percentile) VOD, wc is critical soil moisture,
ww is the soil moisture content of the wettest soil layer, wwp is wilting point. St is
calculated separately for tall and short vegetation.

Sb is defined as

Sb ¼ 1� wc � w1

wc � wr

� �

ð2Þ

where w1 is the surface soil moisture (first layer in the soil water balance module of
GLEAM) and wr is the residual soil moisture content. The values of wwp, wc, and wr

are taken from version 3 of GLEAM42.

Development of the deep learning-based transpiration stress formulation.
The first step consists of defining the target variable, and the appropriate predictors

or covariates. Here, the target variable is the tower-scale St, calculated as

St ¼
Et

Ept
ð3Þ

where, Et is actual transpiration and Ept is potential transpiration.
To estimate Et in Equation (3), we use daily in situ measurements of E,

assembled from a total of 557 flux towers. These towers were compiled from
FLUXNET55 (https://fluxnet.org/data/fluxnet2015-dataset/), FLUXNET-CH4
(https://fluxnet.org/data/fluxnet-ch4-community-product/), AmeriFlux (https://
ameriflux.lbl.gov/), European Eddy Fluxes Database Cluster (http://www.europe-
fluxdata.eu/), and the Integrated Carbon Observation System (ICOS) (https://
www.icos-cp.eu/). After the removal of inconsistent values, we end up with
368 stations, out of which 231 stations (approximately 173,000 data points) are
classified as having dominantly short vegetation and 137 stations (approximately
103,000 data points) are classified as tall vegetation (refer to Fig. 12 and Table 3 in
Supplementary Information for site-specific details and for the mapping of flux
tower land cover class to tall and short vegetation). To separate Et from E at the
flux stations, we use empirical functions relating the ratio of Et to E to the leaf
area index (LAI) for different vegetation classes56 (see Section 2 in Supplementary
Information). We remove rainy days from the flux tower datasets to minimize the
impact of interception loss on the measurements of E and sensor errors during
rain. The LAI-based Et partitioning model is used here to ensure that the deep
learning model of St is completely independent from the E partitioning model
used to estimate Et at the eddy covariance sites. Other commonly used
partitioning models apply water use efficiency and surface conductance as the
main predictors in their empirical approaches57, which are in turn dependent on
vapor pressure deficit (VPD), an important covariate used in the deep learning
model developed in this study (see below). Therefore, to prevent such
confounding dependencies between VPD and St, we use an LAI-based empirical
model56. We note here that none of the existing Et partitioning models, simple or
complex, are perfect. The LAI-based method used here has been validated over
different ecosystems24.
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To mitigate the effects of the uncertainty in Et estimates arising from the choice of
the partitioning model used in this study, we supplement the estimates of tall vegetation
Et partitioned from E at the flux towers with a more direct estimate of Et from sap flow
measurements. These in situ measurements are sourced from SAPFLUXNET, a global
database of tree-level sap flow measurements58. It contains sub-daily time series of sap
flow accompanied by in situ-measured hydrometeorological variables and ancillary site,
stand and plant metadata. Here, tree-level sap flow data (cm3/h) from SAPFLUXNET
version 0.1.5 was expressed per unit projected crown area (Ac), estimated as a function
of tree trunk basal area at breast height (Ab), site mean annual temperature (MAT) and
precipitation (MAP). This model (logAc ¼ �2:53þ 6:02E � 01 � logAb þ 9:60E�
02 �MAT � 5:48E � 05 �MAP, N= 1055, R2= 0.89) was fitted using data from the
Biomass And Allometry Database59 (BAAD). Tree-level averages of sap flow per unit
crown area were then averaged per measured species, weighed by the basal area
composition of the stand, and aggregated into daily values. A total of 90 experimental
sites are used in the study (Fig. 13 and Table 4 in Supplementary Information). With
the addition of the sap flow measurement sites to the 137 flux towers, the total number
of data points available for training and validating the deep learning model of Et stress
for tall vegetation is approximately 125,000 (20% corresponding to sap flow sites).

Next, we obtain from daily values of Ept for each station from GLEAM. GLEAM
uses a Priestley-Taylor formulation to calculate Ept which has been shown to be
generally accurate at ecosystem scales24. To account for the scale mismatch
between grid-scale estimates of GLEAM and point-scale measurements at the flux
tower sites, we scale the Ept values with Et values using days following rain days as:

Escaled
pt ¼

Eraw
pt � Eraw

pt;mean

Eraw
pt;sd

 !

� Eflux
t;sd þ Eflux

t;mean ð4Þ

where Eraw
pt is the raw GLEAM Ept for the specific flux tower site, Eraw

pt;mean is the
mean of the raw GLEAM Ept estimates for the specific flux tower site, Eraw

pt;sd is the

standard deviation of the raw GLEAM Ept for the specific flux tower site, Eflux
t;mean is

the mean of the observed Et at the flux tower, and Eflux
t;mean is the standard deviation

of the observed Et at the flux tower. Inherent in this bias-correction approach is the
assumption that ecosystems transpire at their potential on days after rainfall.

The covariates used for modeling St are the absolute values and seasonal
anomalies of the following variables: (a) PAW, (b) VPD, (c) Ta, (d) SWi (e) VOD,
(f) CO2. PAW is commonly defined60 as

PAW ¼ ww � wwp

wc � wwp
ð5Þ

The absolute values and anomalies of PAW for the flux tower sites are derived from
GLEAM42(see section 3 in Supplementary Information for input data used in GLEAM).
VPD is derived from relative humidity and Ta data sourced from Atmospheric Infrared
Sounder (AIRS) aboard the Aqua satellite mission61. SWi is derived from the Clouds
and the Earth’s Radiant Energy System (CERES) satellite mission62. VOD is derived
from the Vegetation Optical Depth Climate Archive (VODCA) dataset63. The SWi and
VOD from the same data sources are used as forcing to the GLEAM model to generate
PAW to ensure consistency. CO2 data is sourced from the Copernicus Atmopsheric
Monitoring Service Global Inversion of Greenhouse Gas Fluxes and Concentrations
project (https://ads.atmosphere.copernicus.eu). Finally, within the GLEAM soil water
balance model, Equation (5) is solved for short and tall vegetation separately and
aggregated based on the fraction of tall and short vegetation in every grid cell. For tall
(or short) vegetation flux tower sites, PAW weighted by the corresponding tall (or
short) vegetation fraction is extracted. In GLEAM, for tall vegetation, ww is calculated
based on three soil layers, and for short vegetation ww is based on two soil layers. Here,
we note that the choice of estimating the covariates from global gridded datasets rather
than in situ measurements at the flux towers and sap flow sites is deliberate. This is
done to maintain consistency between the datasets which are used for training (at the
point scale) and prediction within the hybrid model (at a coarser scale of 0.25° × 0.25°).
In doing so, we aim to minimize the uncertainties that would arise from training and
predicting with different datasets. This experiment design choice trades potentially
higher local scale prediction and interpretability for more consistent and reliable
prediction at the global scale.

Deep learning model architecture and training. Designing an optimal deep
learning model involves optimizing a number of model-related variables (hyper-
parameters) such as the number of layers, number of neurons in each layer, the
activation functions in each layer, the rate of dropout to prevent over-fitting, the
optimal learning rate, and a loss or objective function along with an appropriate
validation metric for evaluating the progress of model training. Here, we design the
model architecture, optimize the hyper-parameters, and train the deep learning
model using TensorFlow version 2.464. To optimize the hyper-parameters, we
employ an automated optimization library available in TensorFlow; specifically, a
Bayesian optimization procedure with maximization of the Kling Gupta Efficiency
(KGE)65 as both the training objective and validation metric. In training the
objective function is implemented as minimization of 1− KGE. KGE is selected as
it combines correlation, variability bias, and mean bias into a single metric. KGE is

defined as

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr � 1Þ2 þ σsim
σobs

� 1

� �2

þ μsim
μobs

� 1

� �2
s

ð6Þ

where r is linear correlation between simulated and observed values, σsim and σobs
are standard deviation of simulations and observations, and μsim and μobs are mean
values of simulations and observations.

First, the Bayesian hyper-parameter optimization was carried out for short
vegetation data (231 sites). The most optimal deep learning architecture was found
after approximately 1000 iterations of the Bayesian optimization procedure. The
resulting deep learning architecture was manually tuned. The final model was then
trained for short vegetation St with a training:validation data split of 85:15, a batch
size of 100, a learning rate of 0.000142, and a maximum epoch size of 1000. The
training process does not make any distinction between the different sites—all the
173,000 data points from the 231 sites are treated equally. The training was
automatically stopped when the validation objective function started degrading
(while the training objective function keeps improving), a sign that the model is
overfitting (Fig. 11 in Supplementary Information shows the evolution of the
objective during the training process). The same model architecture and training
setup was used for training the model for tall vegetation St (227 sites). As the model
performed satisfactorily with some minor changes, the time consuming hyper-
parameter optimization procedure was not performed separately for the tall
vegetation dataset (see Fig. 8 in Supplementary Information for the final deep
learning models).

Calculation of SIF/PAR. SIF data is sourced from the contiguous Orbiting Carbon
Observatory-2 (OCO-2) dataset, which is available at 0.05° resolution and 16-day
time step66. This dataset uses machine learning to gap-fill SIF data to produce a
spatially continuous dataset from the OCO-2 satellite, which has a smaller foot-
print and infrequent overpass times. The data was spatially aggregated to 0.25° and
temporally aggregated to monthly timescales for calculating the correlation maps
(Fig. 6) and to seasonal time scales Fig. 4. PAR data is from the CERES mission62.
PAR data is available at 1.0° resolution at hourly to monthly resolution. Here, the
monthly PAR data was used to normalize SIF data.

Data availability
The outputs of the hybrid model generated in this study and data required for
reproducing the results and figures in the main text have been deposited at https://
doi.org/10.5281/zenodo.588660867.

Code availability
The deep learning-based formulations of transpiration stress for tall and short vegetation
and all the codes required for reproducing the results and figures in this study are
available at https://doi.org/10.5281/zenodo.634300568.
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